
A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

TO PREDICTION OF PERFORMANCE IN PARALLEL ALGORITHMS 
 
aFILIP JANOVIČ, bPETER HANULIAK 
 
aUniversity Žilina, Slovakia, email: filip@janovic.sk 
bPolytechnic institute, Dubnica nad Vahom, Slovakia, email: 
phanuliak@googlemail.com 
 
 
Abstract: With the availability of powerful PC and networking devices, the recent 
trend in parallel computing is to connect a number of individual workstations to solve 
computation intensive tasks in parallel way on connected class of workstations. 
Current trends in high performance computing are to use networks of workstations as 
a cheaper alternative to traditionally used massively parallel multiprocessors or 
supercomputers. The individual workstations as parallel computers based on modern 
symmetric multicore implemented within workstation. To exploit the parallel 
processing capability of such cluster, the application program must be paralleled. On 
application ex. we demonstrate the various influences in process of performance 
prediction modelling and the consequences for their parallel implementations.   
 
Keywords: network of workstations, parallel algorithm, performance modelling, 
performance prediction, isoefficiency, communication overheads. 
 

 
1. Introduction 

There has been an increasing interest in the use of 
networks of workstations (NOW) connected together by high 
speed networks for solving large computation intensive 
problems [9, 12]. Their typical architectures are at Fig.1. and its 
alternative modification at Fig 2.  

 
PC 1 PC 2 PC 3 PC n. . .

- switch
s

s

Myrinet 
- Myrinet port
- 1G Ethernet (10G Ethernet) port

 
Fig.1. Typical architecture of NOW. 

This trend is mainly driven by the cost effectiveness 
of such systems as compared to parallel computer with massive 
number of tightly coupled processors and memories. Parallel 
computing on a cluster of powerful workstations connected 
together by high speed networks have given rise to a range of 
hardware and network related issues on any given platform.  

Effective use of these parallel computers requires a 
detailed understanding of the new complexities of parallel 
programming. Performance bottlenecks will be many times 
larger than was the case for the smaller parallel machines that 
have been in use last decade. The increased complexity of more 
complex NOW (single PC workstations, symmetrical 
multiprocessor workstation – SMP) makes it difficult to 
accurately predict execution time for a particular application. 

              

Ethernet switch

Myrinet (InfiniBand) switch

Laboratory (SMP, NOW)

Intel
Xeon . . .PC1 PC2 PCi

1

1 2 i

i2

Fig.2. Alternate architecture of NOW.  

 
It has been therefore difficult to develop simple 

formulations to predict the execution time of parallel programs 
due to the complexity of characterising parallel hardware and 
software. In an attempt to clarify these characterisations, we 
introduce a methodology for applying a simple prediction 
performance model based on isoefficiency concept law.  Our 
formulation results in predictions of execution time not only on 
available systems but also for theoretical parallel systems. This 

allows programmers to select the optimal number of processors 
to apply to a particular problem or to select an appropriate 
problem size for the number of processors available. In short, we 
are able to quantify the scalability of a specific algorithm when it 
is run on a specific or on theoretical parallel computer. Our 
results illustrate key performance limitations of parallel systems, 
showing the impact of overhead and the scaling of problem size.  
 
2. Parallel algorithms 

In principal we can divide parallel algorithms into two 
following classes 

• parallel algorithm using shared memory. These 
algorithms are developed for parallel computers with 
dominated shared memory as actual symmetrical 
multiprocessors or multicore systems (SMP) 

• parallel algorithm using distributed memory (DPA). 
These algorithms are developed for parallel computers 
with distributed memory as actual NOW system and 
their higher integration forms named as Grid systems.  

The main difference is in form of inter - process 
communication (IPC) among individual parallel processes. 
Generally we can say that IPC communication in parallel system 
with shared memory can use more possibilities than in 
distributed systems.   

2.1. Developing parallel algorithm 

To exploit the parallel processing capability the application 
program must be parallelised. The effective way how to do it for 
a particular application problem (Decomposition strategy) 
belongs to the most important step in developing a effective 
parallel algorithm [5]. The development of the parallel network 
algorithm includes the following activities 

• decomposition - the division of the application into a set of 
parallel processes 

• mapping - the way how processes and data are distributed 
among the nodes 

• inter-process communication - the way of corresponding 
and synchronisation among individual processes 

• tuning - alternation of the working application to improve 
performance (performance optimisation). 

The most important step is to choose the best 
decomposition method for given application problem. To do this 
it is necessary to understand the concrete application problem, 
the data domain, the used algorithm and the flow of control in 
given application. When designing a parallel program the 
description of the high-level algorithm must include, in addition 
to design a sequential program, the method you intend to use to 
break the application into processes (decomposition strategy) 
and distribute data to different nodes (mapping).  
 
3. Performance modelling  

To performance evaluation of parallel algorithms we 
can use analytical approach to get under given constraints 
analytical laws or some other derived analytical relations. The 
most known analytical relations have been derived without 
considering architecture and communication complexity. That 
means a performance P ≈ f (computation). Such assumptions 
could be real in many cases in existed massively multiprocessor 
systems in the world but not in NOW and Grid.   

In NOW we have to take into account all aspects that 
are important for complex performance evaluation according the 
relation P   ≈ f (architecture, computation, communication, 
synchronisation etc.). Theoretically we can use following 
solution methods to get a function of complex performance 

Quantitative evaluation and modelling of hardware and 
software components of any parallel systems are critical for the 
delivery of complexity and high performance of used parallel 



A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

algorithms [2]. To evaluate parallel algorithms there have been 
developed several following fundamental concepts 

• analytical 
      application of queuing theory [4, 6, 7]     
      asymptotic analysis [3, 8]  
      Petri nets [7] 

• simulation [10] 

• experimental measurement [3]. 
 
3. 1. Performance metrics 
 
 To evaluating parallel algorithms there have been 
developed several fundamental concepts. Tradeoffs among these 
performance factors are often encountered in real-life 
applications. 
 
3.1.1. Speed up 

Let O(s, p) be the total number of unit operations 
performed by p processor system, s defines size of the 
computational problem and T(s, p) be the execution time in time 
units. Then speedup factor is defined as 

),(
)1 ,(),(

psT
sTpsS =  

3.1.2. Efficiency 
The system efficiency for a p processor system is 

defined by 

),( 
)1 ,(),(),(
psTp

sT
p

psSpsE ==  

3.1.3. Scalability metrics  

Scalability metrics describe the application 
characteristics in terms of relative gain or loss in performance as 
a function of the number of the allocated resources. A popular 
measure of how effectively an application uses a given parallel 
system is speedup. 

3.1.4. Isoefficiency concept  
The workload of any parallel algorithm often grows 

in the order O(s), where s is the size of concrete problem. Thus, 
we denote the workload w = w(s) as a function of s. In parallel 
computing is very useful to define an isoefficiency function 
relating workload to machine size p needed to obtain a fixed 
efficiency E when implementing a parallel algorithm on a 
parallel system. Let h be the total communication overhead 
involved in the algorithm implementation. This overhead is 
usually a function of both machine size and problem size, thus 
denoted h = h(s, p). The efficiency of a parallel algorithm 
implemented on a given parallel computer we defined using 
workload and overhead functions as 

),()(
)(),(

pshsw
swpsE

+
=  

The workload w(s) corresponds to useful 
computations while the overhead h(s, p) are useless times related 
to synchronisation and data communication delays. In general, 
the overhead increases with respect to both increasing values of 
s and p. Thus, the efficiency is always less than 1. The question 
is hinged on relative growth rates between w(s) and h(s, p). 
 With a fixed problem size (fixed workload), the 
efficiency decreases as p increase. The reason is that the 
overhead h (s, p) increases with p. With a fixed machine size, the 
overload h grows slower than the workload w.  Thus the 
efficiency increases with increasing problem size for a fixed-size 
machine. Therefore, one can expect to maintain a constant 
efficiency if the workload w is allowed to grow properly with 
increasing machine size. 
 For a given algorithm, the workload w(s) might need 
to grow polynomial or exponentially with respect to p in order to 

maintain a fixed efficiency. Different parallel algorithms may 
require different workload growth rates to keep the efficiency 
from dropping, as p is increased. The isoefficiency functions of 
common parallel algorithms are polynomial functions of p; i. e., 
they are O (pk) for some k ≥1. The smaller a power of p in the 
isoefficiency function is, the more scalable the parallel system. 
Here, the system includes the algorithm and architecture 
combination. 
 We can rewrite equation for efficiency E(s, p) as E(s, 
p)=1/(1=h(s, p)/w(s)). In order to maintain a constant E, the 
workload w(s) should grow in proportion to the overhead h(s, p). 
This leads to the following relation: 
 

),(
1

)( psh
E

Esw
−

=  

 
 The factor C = E/1-E is a constant for a fixed 
efficiency E. thus we can define the isoefficiency function as 
fE(p)=C. h(s, p). If the workload grows as fast as fE(p) then a 
constant efficiency can be maintained for a given algorithm-
architecture combination.  
 
4.  Modelling of complexity in parallel algorithms   
 

To this time known results in complexity modelling on 
the in the world used classical parallel computers with shared 
memory (supercomputers, SMP and SIMD systems) or 
distributed memory (Cluster, NOW, Grid) mostly did not 
consider the influences of the parallel computer architecture and 
communication overheads supposing that they are lower in 
comparison to the latency of executed massive calculations. 

In this sense analysis and modelling of complexity in 
parallel algorithms (PA) is rationalised to the analysis of 
complexity of own calculations, that mean that the function of 
control and communication overheads are not a part of derived 
relations for execution time T (s, p). In this sense the function in 
the relation for isoefficiency suppose, that dominate influence to 
the overall complexity of the parallel algorithms has complexity 
of performed massive calculations. Such assumption has proved 
to be true in using classical parallel computers in the world 
(Supercomputers, massively multiprocessors – shared memory, 
SIMD architectures etc.).  To map mentioned assumption to the 
relation for asymptotic isoefficiency w(s) means that [2] 

 
[ ] [ ]compcompcomp TTpshTsw max),(,max)( =<=  

 
In opposite at parallel algorithms for the actually 

dominant parallel computers on the basis NOW (including SMP 
systems) and Grid is for complexity modelling necessary to 
analyse at least most important overheads from all existed 
overheads which  are [1, 11 

• architecture of parallel computer 
• own calculations (Tcomp) 
• communication latency (Tcomm) 

 start - up time 
 data transmission 
 routing 

• parallelisation latency (Tpar) 
• synchronisation latency (Tsyn). 

 
Taking into account all this kinds of overheads the total 

parallel execution time is  
 

( )∑ +++= syncommparcompcomplex TTTTpsT ),(  

 
, where Tcomp, Tpar , Tcomm, Tsyn  denote the individual overheads 
for calculations, parallelisation overheads, communication and 
synchronisation overheads. The more important overhead parts 
build in the relation for isoefficiency the used the overhead 
function h (s, p), which influence in general is necessary to take 
into account in performance modelling of parallel algorithms. In 
general nonlinear influence of h (s, p) could be at performance 



A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

parallel algorithm modelling dominant (Fig. 3.). Then for 
asymptotic isoefficiency analysis is true 
 

[ ]),(,max)( pshTsw comp=
 

 
, where the most important parts for dominant parallel computers 
(NOW, Grid) in overhead function h (s, p) is the influence of  
Tcomm (Communication overheads). 
 

 

 
Number of processors

Communication
timeProcessing

time

Execution time

 
            Fig. 3.  Relations among times in parallel algorithms.  

 
Processing time T (s, p)comp of parallel algorithm is 

given through quotient of sequential running time (Complexity 
product of sequential algorithm Zsa and a constant tc as a 
average value of performed calculation operations) through 
number of used calculation nodes of the given parallel computer.  
Parallel calculation complexity of T(s, p) as a limit of a 
theoretical unlimited number of calculation nodes is given as   

0.lim)p ,(  == ∞→ p
tZsT csa

pcomp
 

Communication time T (s, p)comm  is given through 
the number of performed communication operations in concrete 
parallel algorithm and depends from used decomposition model. 
To the practical illustration of communication overheads we 
used the possible matrix decomposition models.  

 
5. Decomposition of matrix models  
 In general we are considering the typical possible 
decomposition strategies in following matrix  
 

a ,  a ,   .  .  .   , a
a ,  a ,   .  .  .   , a
  .      .                   .
  .      .                   .
  .      .                   .
a , a ,   .  .  .   , a

11 12 1n

21 22 2n

m1 m2 mn

A =

 
 
In order to achieve effective parallel algorithm it is 

necessary to map every parallel process more than one matrix 
element. Then for mapping a cluster of matrix elements there are 
in principal two ways   

• mapping of square blocks to every parallel process as 
illustrated at Fig. 4. 

• mapping of p columns or p rows.  
 

B1 B2

n

.  .  .

Bp
.  .  .

   .
.  .  .
   .

n

 
 
Fig. 4.  Decomposition strategy to blocks.  

 

Depending of used decomposition methods there are 
derived needed communication activities. In general square 
matrix in two dimensions in halts n2 elements (complexity for 
sequential algorithm, which are equally divided to p build 
parallel processes, that means every parallel process gets n2 / p 
elements. In order to achieve effective parallel algorithm it is 
necessary to map every parallel process more than one matrix 
element. Then for mapping a cluster of matrix elements there are 
in principal two ways   

• mapping of square blocks to every parallel process as 
illustrated at Fig. 4. 

• mapping of p columns or rows.   

Depending of used decomposition methods there are 
derived needed communication activities. In general square 
matrix in two dimensions in halts n2 elements (complexity for 
sequential algorithm, which are equally divided to p build 
parallel processes, that means every parallel process gets n2 / p 
elements.     
 
5.1.  Matrix decomposition to blocks 
 For mapping matrix elements in blocks a inter 
process communication is performed on the four neighbouring 
edges of blocks (Fig. 5.), which it is necessary in computation 
flow to exchange. Every parallel process therefore sends four 
messages and in the same way they receive four messages at the 
end of every calculation step supposing that all needed data at 
every edge are sent as a part of any message).  

n/  p

   .
   .
   .

   .
   .
   .

.  .  ..  .  .

√

 
 

 
Fig. 5.  Communication consequences for decomposition to 

blocks.  

 
 



A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

Then the requested communication time for this decomposition 
method is given as   

)(8 wscomb t
p
ntT +=

 
where 

• t s - is a start up time (time to initialise a 
communication)  

• tw - characterise needed time to transmit one word of 
message. 

Graphical explanation of used communication 

parameters illustrates Fig. 5. 

 

Length

Time

21 3 4 5 6

ts

tw

 
Fig. 5.  Illustration of communication parameters.  

 
This equation is correct for p ≥ 9, because only under 

this assumption it is possible to build at least one square because 
only then is possible to build one square block with for 
communication edges. Using these variables for the 
communication overheads in decomposition method to blocks is 
correct  

)(8 ),()p ,( wscombcomm t
p
ntpshTsT +===  

 
5.2.  Isoeffectivity function  
 In the process of deriving needed isoeffectivity 
function we come out from derived function h(s, p) for analysed 
decomposition method  as h (s,p) = Tcomb  according the relation 

)(8 wscomb t
p
ntT +=  

After appropriate modifications we get for isoefficiency 
following final relations  
   









=

c

w

c

sbloky
t
tpnC

t
tpCsw 8,8max)(  

 

0,0E+00

5,0E+07

1,0E+08

1,5E+08

2,0E+08

0 200 400 600 800 1000

w

p
Fig.7.  Isoefficiency functions (n = 1024).   

 
Fig. 7. illustrate isoefficiency functions for individual 

constant values of effectivity (E = 0,1 až 0,9) for n = 1024 using 
the communication constants of parallel computer Cray T3E  
(ts = 3 µs,  tw = 0,063 µs).   
 
6. Conclusions 

Performance evaluation as a discipline has repeatedly 
proved to be critical for design and successful use of operating 
systems. At the early stage of design, performance models can 
be used to project the system scalability and evaluate design 
alternatives. At the production stage, performance evaluation 
methodologies can be used to detect bottlenecks and 
subsequently suggests ways to alleviate them. Queueing 
networks and Petri nets models, simulation, experimental 
measurements, and hybrid modelling have been successfully 
used for the evaluation of system components. Via the extended 
form of isoefficiency concept for parallel algorithms we 
illustrated its concrete using to predicate the performance of 
typical matrix parallel algorithms. Based on derived 
issoeficiency function for matrix model the paper deals with the 
actual role of performance prediction in parallel algorithms. Due 
to the dominant using of parallel computers based on the 
standard PC in form of NOW and their massively integration 
named as Grid  (integration of many NOW), there has been great 
interest in performance prediction of parallel algorithms in order 
to achieve optimised parallel algorithms (Effective parallel 
algorithms). Therefore this paper summarises the used methods 
for complexity analysis which can be applicable to all types of 
parallel computers (supercomputer, NOW, Grid). Although the 
use of NOW and Grid parallel computers should be in some 
parallel algorithms less effective than the in the world used 
massively parallel architectures (Supercomputers) the parallel 
computers based on NOW and Grid belong nowadays to 
dominant parallel computers.   
 
 
Literature: 
 
1. Fortier P., Howard M., Computer system performance 
evaluation and prediction, 544 p., 2003, Digital Press  
2. Goldreich O., Computational complexity, Cambridge 
University Press, 632 pages, 2010 
3. Hanuliak I., Hanuliak P., Performance evaluation of iterative 
parallel algorithms, Kybernetes, Volume 39, No. 1, pp. 107 – 
126, 2010, United Kingdom   
4. Hanuliak M., Hanuliak I., To the correction of analytical 
models for computer based communication systems, Kybernetes, 
The International Journal of Systems & Cybernetics, West 
Yorkshire, Volume 35, No. 9, 1492-1504, 2006, United 
Kingdom  
5. Hanuliak J., Hanuliak I., To performance evaluation of 
distributed parallel algorithms, Kybernetes, The International 
Journal of Systems & Cybernetics, West Yorkshire, Volume 34, 
No. 9/10, pp. 1633-1650, 2005,United Kingdom 
6. Hanuliak J., Hanuliak M., Analytical modelling of distributed 
computer systems, NOW, In Proc.: TRANSCOM 2005, Zilina, 
(2005), 103-110 
7. Hillston J., A Compositional Approach to Performance 
Modelling, University of Edinburg, 172 pages, 2005, Cambridge 
University Press, United Kingdom 



A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

8. Hudik M., Performance optimization of broadcast collective 
operation on multi-core cluster, ICSC Leden 2012,  Kunovice, 
Czech republic (in print) 
9. Kirk D. B., Hwu W. W., Programming massively parallel 
processors, Morgam Kaufmann, 280 pages, 2010 
10. Kostin A., Ilushechkina L., Modelling and simulation of 
distributed systems, 440 pages, Jun 2010, Imperial College 
Press. 
11. Kumar A., Manjunath D., Kuri J., Communication 
Networking , 750 pp., 2004, Morgan Kaufmann 
 
Primary Paper Section: I 
 
Secondary Paper Section: IN, JC, JD 


	1. Introduction
	2. Parallel algorithms
	3. Performance modelling
	3. 1. Performance metrics
	3.1.1. Speed up
	3.1.2. Efficiency
	3.1.4. Isoefficiency concept
	4.  Modelling of complexity in parallel algorithms
	5. Decomposition of matrix models
	5.1.  Matrix decomposition to blocks

	5.2.  Isoeffectivity function
	6. Conclusions


