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Abstract: Strategies of passive management in portfolio selection are based on 
imitating the performance of a specific benchmark (that is designed in such a way that 
it approximates as best as possible the value of the market portfolio) with the intention 
of achieving minimum discrepancy between the benchmark performance and the 
tracking portfolio performance. In the paper attention is given to portfolio selection 
based on partial replication of the S&P 500 Index. In contrast to the traditional 
Markowitzian approach, the key criterion of portfolio selection is minimization of the 
quadratic tracking error variance. In the empirical exercise, out of the stocks 
represented in the S&P 500 Index one stock was chosen randomly by each of the 10 
GICS sectors and this selection of 10 stocks were available for portfolio selection. On 
the scale of performance, the quadratic index tracking strategy can be seen superior to 
the traditional Markowitzian approach. 
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1 Introduction 
 
There are various approaches to portfolio selection and two broad 
classes can be singled out, active asset management and passive 
asset management. Procedures that are practised under the active 
approach embrace the well-known Markowitzian approach and are 
generally well known. On the other hand, passive active 
management is based on replicating a suitably chosen benchmark, 
usually a financial index, and under this course, portfolio selection 
is based on minimizing the discrepancy between the portfolio 
returns and the benchmark returns. Any strategy aiming at the 
replication of the underlying financial index is addressed as index 
tracking. Several approaches to index tracking have been devised 
and one of them, quadratic index tracking, is expounded in the 
paper. After a short theoretical outline, the exposited topics are 
demonstrated in an empirical exercise. In this exercise, four 
random selections of ten assets represented in the S&P 500 Index 
are made in a stratified way so that each sector of the GICS 
classification is represented by one respective asset. For each 
selection, a total of five portfolios are constructed for the purpose 
of comparison. This comparison involves juxtaposing the quadratic 
index tracking strategy, in two variants, to the traditional 
Markowitzian approach, in two variants, and evaluating the results 
with respect to the performance of the underlying S&P 500 Index. 
The empirical exercise is designed so as to highlight and 
demonstrate some properties of the quadratic index tracking 
strategy as compared to the traditional Markowitzian approach. Its 
results are interesting for the investor. All though the quadratic 
index tracking strategy proves insufficient to guarantee that the 
benchmarked index is outperformed nor it can be deemed 
universally preferable than the traditional Markowitzian approach; 
if performance is defined in terms of the relation between mean 
return and standard deviation, it eventually delivers higher 
performance. 
 
Save the introduction and the conclusion, the core of the paper 
consists of three sections. The section that follows is a short 
presentation on the traditional Markowitzian approach and is 
appended by theoretical exposition of the quadratic tracking 
error in the other section. The final section explains the design of 
the empirical exercise and shows its results. 
 
1 Markowitzian approach 
 
In the approach of Markowitz, the rational investor balances the 
expected return and the risk of his portfolio exposition. This may 

be easily put in the words of Markowitz (1952, p. 79): “There is 
a rule which implies both that the investor should diversify and 
that he should maximize expected return. The rule states that the 
investor does (or should) diversify his funds among all those 
securities which give maximum expected return.” To set up this 
considerations in practice, some framework is needed. To this 
end, it is assumed that the portfolio of the investor is to be 
created of k risky assets. Suppose that these k risky asset returns 
are represented by a random vector ξ = (ξ1, ..., ξk)′ that have an 
expectation µ = (µ1, ..., µk)′ and an k× k covariance matrix 
Σ = (Σ ij)k× k  (the diagonal elements Σ ii  are variances σ i

2 of 
individual returns and non-diagonal elements are respective 
covariances). Assume for now that the both the expectation µ 
and the covariance matrix Σ are known. Any portfolio Π with a 
set of k weights ω = (ω1, ..., ωk)′ that decide allocation of 
available financial funds across individual risky assets has 
expected return ω′µ and variance ω′Σ ω. If the investor desires 
the expected return µ0 (at least), he would pursue a two-step 
optimization program. In the first step, he would determine the 
weights of the portfolio with the expectation µ0 and a minimum 
variance by solving the following task,  

0min     subject to    1 &μ .
k∈ℜ

′ ′ ′=
ω

ω Σω ω 1 ω μ =  (1) 

Let σ2
0 denote the variance that is delivered by the optimal 

solution of the first step. The investor would then see that at the 
level of risk expressed by σ2

0 there exists no portfolio whose 
expectation is possibly higher than the desired expectation µ0. 
This would be facilitated by the somewhat reversed 
optimization, 

2
0max     subject to    1 & .

k
σ

∈ℜ
′ ′ ′=

ω
ω μ ω 1 ω Σω =  (2) 

It is frequently the case that this formulation of the optimization 
task is extended by the short selling restriction. 
 
In practice, however, quantities µ and Σ are not known and must 
be substituted by their respective estimates. Ordinarily, the 
expectation vector µ is estimated by simple averaging of 
individual historical asset returns and an estimate of the 
covariance matrix Σ is produced by a traditional unbiased 
estimator. Since these estimators are well known and used by 
default, their description is omitted in the paper. This is called 
here as the “classical approach”. As an alternative to this, these 
inputs may be estimated by some robust procedure. In the paper, 
they are estimated by the fast Minimum Covariance Determinant 
(MCD) estimator proposed by Rousseeuw and van Driessen 
(1999). This approach is addressed as the “robust (MCD) 
approach”. 
 
2 Quadratic tracking error 
 
No probabilistic framework is made use of here, just a sample of 
historical observations on returns computed for the benchmark 
as well as for the risky assets whose portfolio is to mimic the 
benchmark are employed as an input. In this, assume that a 
history of T historical observations of logarithmic returns is 
available and that the tracking portfolio is to be composed of k 
assets. Let Y = (Y1, ..., YT)′  denote a (T × 1) vector of 
benchmark returns, and X = (x1 | ...  | xT)′ denote a (T × k) 
matrix of returns of the k assets that are to be represented in the 
tracking portfolio. The symbol ω stands for a (k × 1) vector of 
unknown portfolio weights that are obtained by minimizing the 
following quadratic optimization problem 

min( ) ( )    subject to    1,
∈ℜ

′ ′− − =
kω

Y Xω Y Xω ω 1  (3) 

in which 1 is a (k × 1) vector of ones. This general formulation 
of the optimization task allows an extension and can be 
complemented by the constraint banning short sales.  
 
This initial (and somewhat traditional) quadratic programming 
approach to portfolio tracking is one way to determine the 
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tracking portfolio. Its slight modification gives another 
possibility of finding (an estimate of) the vector ω. The program 
in (3) can be restated as an ordinary least squares (OLS) 
problem. Minimizing the sum of squares of portfolio tracking 
error deviations is equivalent to running an OLS regression of 
benchmark returns on individual asset returns to be represented 
in the tracking portfolio. In this formulation of a regression 
without intercept, regression coefficients are portfolio weights 
and residuals form tracking errors.  
 
To this end, the constraint ω′1 is dropped for a while. Writing a 
(T × 1) vector of tracking errors as ε (with ε := Y – Xω) and 
assuming that X is of full column rank, it is evident that the 
problem can be well expressed via a regression model  

= +Y Xω ε  (4) 

and that the objective function is minimized for 
1( ) .−′ ′≡ω XX XY  (5) 

In order to obtain the final weights ω, the OLS weights ω  are 
then normalized so as to sum to one, i.e. 

.′ω = ω ω 1  (6) 

The quantity ε′ε is sometimes inaptly called tracking error 
variance, but it is merely a tracking error measure in quadratic 
portfolio tracking. In fact, as a quadratic tracking error measure 

an alternative and interpretationally easier quantity TEMQUAD 
comparable to a standard deviation might be employed, 

21
1

( ) .=

=
′= −∑ t T

QUAD t tT t
TEM Y ω x  (7) 

This measure is a non-central measure and is thus influenced not 
only by random positive or negative deviations but also by a 
possible underperformance or outperformance relative to the 
benchmark. Estimates produced by estimator (5) are attractive in 
a statistical sense as this estimator is a best linear unbiased 
estimator in model (4).  
 
Theoretical details and a further exposition on these issues may 
be found in Rudolf, Wolter and Zimmermann (1999) or in 
Prigent (2007).  
 
3 Empirical Exercise 
 
In the empirical exercise, out of the stocks represented in the 
S&P 500 Index one stock was chosen randomly by each of the 
10 GICS sectors and this selection of 10 stocks were available 
for portfolio selection. This was repeated four times. The four 
samples of these stocks is displayed in Table 1. It was without 
design that these samples do not overlap and not stock is 
repeated in a different sample. 

 
Table 1. The stocks participating in the empirical exercise 

     

GICS sector SELECTION 1 SELECTION 2 SELECTION 3 SELECTION 4 
     

Consumer 
Discretionary 

Starbucks Corp. 
(SBUX) 

Carnival Corp. 
(CCL) 

Penney (J.C.) 
(JCP) 

Amazon.com Inc 
(AMZN) 

     

Consumer Staples Reynolds American Inc. 
(RAI) 

McCormick & Co 
(MKC) 

General Mills  
(GIS) 

Kimberly-Clark 
(KMB) 

     

Energy Alpha Natural Resources 
(ANR) 

Occidental Petroleum 
(OXY) 

Noble Corp 
(NE) 

Marathon Oil Corp. 
(MRO) 

     

Financial SLM Corporation 
(SLM) 

Berkshire Hathaway 
(BKR.B) 

Vornado Realty Trust 
(VNO) 

Regions Financial Corp. 
(RF) 

     

Health Care Merck & Co. 
(MRK) 

BIOGEN IDEC Inc 
(BIIB) 

Cardinal Health Inc. 
(CAH) 

Allergan Inc 
(AGN) 

     

Industrials Joy Global Inc. 
(JOY) 

Varian Medical Systems 
(VAR) 

General Electric 
(GE) 

CSX Corp 
(CSX) 

     

Information 
Technology 

Teradata Corp. 
(TDC) 

Akamai Technologies Inc 
(AKAM) 

TE Connectivity Ltd. 
(TEL) 

Xilinx Inc 
(XLNX) 

     

Materials Vulcan Materials 
(VMC) 

Allegheny Technologies Inc 
(ATI) 

Alcoa Inc 
(AA) 

The Mosaic Company 
(MOS) 

     

Telecommunications 
Services 

AT&T Inc.  
(T) 

Frontier Communications 
(FTR) 

Crown Castle International 
Corp (CCI) 

Frontier Communications 
(FTR) 

     

Utilities EQT Corporation  
(EQT) 

Sempra Energy 
(SRE) 

NRG Energy 
(NRG) 

Consolidated Edison 
(ED) 

     

Source: the authors. 
 
In computations and preparing graphical presentations, the 
software R version 3.0.1 (R Core Team, 2013) was employed 
with several of its libraries, quadprog (Turlach and 
Weingessel, 2013), timeSeries (Wuertz and Chalabi, 2013), 
PerformanceAnalytics (Carl et al., 2013), fPortfolio 
(Rmetrics Core Team and Wuertz, 2011) and FRBData 
(Takanayagi, 2011). 
 
In the empirical exercise the in-sample-period ran from 1 Jan 
2011 to 31 Dec 2012 and the out-of-sample period stretched 
from 1 Jan 2013 to 20 Nov 2013. Whereas the in-sample period 
was made up of 500 effective logarithmic returns on a trading 
daily basis, there were 225 effective logarithmic returns present 
in the out-of-sample period. Returns for the in-sample period 
were an ingredient in estimating the parameters of the 
Markowitzian mean-variance optimization (the expectation 
vector as well as the covariance matrix of returns) in a classic 
non-robust way as well as in a robust fashion (in which the MCD 

estimator was of use). These estimates were instrumental in 
alternative Markowitzian portfolio selection with the desired 
expected return equivalent to the average in-sample return of the 
S&P 500 Index, i.e. 0.023 % p.d. (equivalent to 5.71 % p.a.). In 
their construction, short sales were permitted. The behaviour of 
these two Markowitzian portfolios is compared to the behaviour 
of two tracking portfolios, one of which is constructed by means 
of the normalized OLS estimator in (6), and the other through 
the constrained quadratic optimization in (3). These portfolios 
were tracked with respect to the S&P 500 Index, and in their 
construction, returns of the in-sample period were of use. The 
weights of the four optimized portfolios are shown in Table 2. 
Note that – despite the fact that no restriction on short sales was 
placed in portfolio tracking – all the tracking portfolios consists 
of long positions only. The composition of the Markowitzian 
portfolios in individual samples is not mutually dissimilar. 
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Table 2. The composition of individual portfolios 
 
           

SAMPLE 1 SBUX RAI ANR SLM MRK JOY TDC VMC T EQT 
 
           

Classical Markowitz 2.89% 35.66% 2.02% -13.48% 23.17% -1.29% -0.69% -1.99% 56.52% -2.80% 
Robust (MCD) Markowitz 2.66% 32.30% 2.94% -4.80% 27.61% -2.11% 1.40% -8.78% 50.39% -1.59% 
 
           

OLS quadratic tracking 8.17% 12.09% 2.49% 9.53% 15.91% 9.15% 8.53% 4.05% 21.79% 8.30% 
Constr. quadratic tracking 7.85% 14.76% 1.85% 7.30% 16.46% 7.82% 7.69% 3.44% 25.27% 7.56% 
 
         
 
         

SAMPLE 2 CCL MKC OXY BRK.B BIIB VAR AKAM ATI FTR SRE 
 
           

Classical Markowitz 4.91% 53.03% -3.19% 1.92% -6.24% 1.31% 1.09% -5.45% 17.07% 35.56% 
Robust (MCD) Markowitz -0.80% 35.69% 3.09% 17.80% -6.04% 11.35% 2.33% -9.14% 13.92% 31.79% 
 
           

OLS quadratic tracking 7.73% 13.37% 14.84% 25.49% 5.09% 6.51% 2.46% 6.83% 1.92% 15.77% 
Constr. quadratic tracking 6.70% 18.43% 12.17% 22.77% 5.48% 5.75% 2.26% 4.83% 2.37% 19.24% 
 
         
 
         

SAMPLE 3 JCP GIS NE VNO CAH GE TEL AA CCI NRG 
 
           

Classical Markowitz 3.05% 76.57% -4.09% 6.53% 17.55% -6.85% 0.76% 0.09% 6.79% -0.40% 
Robust (MCD) Markowitz 2.63% 74.33% 2.54% 9.38% 16.48% -14.56% -6.10% 2.68% 13.28% -0.66% 
 
           

OLS quadratic tracking 1.53% 11.69% 6.14% 15.92% 11.12% 18.40% 12.17% 12.17% 7.32% 3.54% 
Constr. quadratic tracking 1.44% 19.45% 5.21% 14.17% 11.76% 16.04% 10.81% 8.95% 8.84% 3.34% 
 
         
 
         

SAMPLE 4 AMZN KMB MRO RF AGN CSX XLNX MOS FTR ED 
 
           

Classical Markowitz 1.77% 44.75% -0.09% -10.08% -2.24% 1.35% 5.73% 3.70% 6.92% 48.19% 
Robust (MCD) Markowitz 0.71% 52.73% -5.43% -8.42% -1.82% 5.96% 3.73% 3.44% 3.44% 45.67% 
 
           

OLS quadratic tracking 6.42% 17.80% 4.27% 12.41% 15.67% 0.45% 14.71% 8.74% 2.28% 17.25% 
Constr. quadratic tracking 6.27% 19.10% 4.09% 11.59% 15.11% 0.44% 14.44% 8.47% 2.25% 18.24% 
 
         

Source: the authors. 
 
According to the weights reported in Table 2, for each sample, 
four portfolios were fictively created as of 31 Dec 2012, the last 
day of the in-sample period, at their initial value $ 1. 
Simultaneously, on that specific day $ 1 was also fictitiously 
invested in the S&P 500 Index. The evolution of these portfolio 
values over the out-of-sample period is shown in Figures 1 to 4. 
The out-of-sample behaviour of the four constructed portfolios 
for each sample can be looked on and interpreted from several 
perspectives, but from the standpoint of an investor, the most 
decisive is the value of these portfolios on the last day of the out-
of-sample period, as of 20 Nov 2013. No portfolio in any sample 
delivered a higher value than the S&P 500 Index did. In samples 
1, 2 and 4 the ultimate value of index tracking portfolios was as 
of 20 Nov 2013 higher than the value of Markowitzian 
portfolios. Only in sample 3 the value of the portfolio 

constructed by the classic Markowitzian approach was higher 
than the value of both index tracking portfolios. Having claimed 
superiority of quadratic index tracking compared to the 
Markowitzian approach in terms of the final evaluation, it must 
be said that this is chiefly due to the fact that 20 Nov 2013 was 
selected as the decisive landmark. If a different day had been 
chosen for reference, the final impression might have differed. 
The evolution of index tracking portfolios was mostly very 
similar, which was manifested by a very close overlapping or 
closeness of index tracking portfolio values in samples 1, 2 and 
4. A slight discrepancy in the development of index tracking 
portfolio values is detected only in sample 3. Notable differences 
were found with the evolution of Markowitzian portfolios in all 
the samples except sample 4. 

 
Figure 1 The evolution of the value of constructed portfolios (starting on 2012-12-31 at $ 1) over the out-of-sample period for Sample 1 
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Source: the authors. 
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Figure 2 The evolution of the value of constructed portfolios (starting on 2012-12-31 at $ 1) over the out-of-sample period for Sample 2 
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Source: the authors. 
 
Figure 3 The evolution of the value of constructed portfolios (starting on 2012-12-31 at $ 1) over the out-of-sample period for Sample 3 
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Source: the authors. 
 
Figure 4 The evolution of the value of constructed portfolios (starting on 2012-12-31 at $ 1) over the out-of-sample period for Sample 4 
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Source: the authors. 
 
The performance of individual portfolios both in the in-sample 
period and in the out-of-sample period was evaluated by the 
conventionally used Sharpe ratio (in which computation, the 1Y 
nominal interest rate on U.S. government securities was used). 
Individual Sharpe ratios, average returns and risks measured by 
the standard deviation are reported in Table 3 that follows.  
 

There are some distinctive features in the performance of 
individual portfolio selection methods, and on this attention is 
called to the bolded Sharpe ratio values in Table 3. Whilst the 
Markowitzian portfolios in each sample yielded highest in-
sample performance in terms of mean return to standard 
deviation (also one index tracking portfolio in sample 1 can be 
tagged in this fashion), in the out-of-sample period it was the 
index tracking portfolios that showed highest performance on a 
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comparative basis and clearly outperformed both Markowitzian 
portfolios (with the exception of the classic Markowitzian 

portfolio in sample 3). Nonetheless, none of the portfolios 
created indicated a higher Sharpe ratio than the S&P 500 Index.  

 
Table 3. Return characteristics of selected portfolios on a daily basis 

Portfolio  
selection method 

In-sample indicators  
(Jan 2011 – Dec 2012) 

Out-of sample indicators  
(Jan 2013 – Nov 2013) 

Average 
return  
(p.d.) 

Standard 
deviation 

(p.d.) 

Sharpe ratio 
(p.d.) 

Average 
return  
(p.d.) 

Standard 
deviation 

(p.d.) 

Sharpe ratio 
(p.d.) 

        

Sa
m

pl
e 

1 Classical Markowitz 0.02% 0.87% 0.0256 0.04% 0.86% 0.0424  
Robust (MCD) Markowitz 0.02% 0.90% 0.0248  0.05% 0.81% 0.0584  
       

OLS quadratic tracking 0.03% 1.27% 0.0196 0.05% 0.79% 0.0674 
Constr. quadratic tracking 0.03% 1.20% 0.0232 0.05% 0.77% 0.0696 
       

(Investing into) index 0.02% 1.19% 0.0189 0.10% 0.71% 0.1378 
        
        

        

Sa
m

pl
e 

2 Classical Markowitz 0.02% 0.97% 0.0232 0.05% 0.87% 0.0525 
Robust (MCD) Markowitz 0.02% 1.00% 0.0224 0.06% 0.80% 0.0759 
       

OLS quadratic tracking 0.01% 1.30% 0.0055 0.08% 0.80% 0.1022 
Constr. quadratic tracking 0.02% 1.22% 0.0132 0.08% 0.79% 0.1035 
       

(Investing into) index 0.02% 1.19% 0.0189 0.10% 0.71% 0.1378 
        

        
        

Sa
m

pl
e 

3 Classical Markowitz 0.02% 0.84% 0.0267 0.09% 0.84% 0.1041 
Robust (MCD) Markowitz 0.02% 0.85% 0.0262 0.07% 0.86% 0.0840 
       

OLS quadratic tracking 0.00% 1.31% - 0.0004 0.08% 0.81% 0.1016 
Constr. quadratic tracking 0.01% 1.21% 0.0054 0.08% 0.77% 0.1089 
       

(Investing into) index 0.02% 1.19% 0.0189 0.10% 0.71% 0.1378 
        
        

        

Sa
m

pl
e 

4 Classical Markowitz 0.02% 0.71% 0.0313 0.05% 0.81% 0.0611 
Robust (MCD) Markowitz 0.02% 0.77% 0.0290 0.06% 0.84% 0.0680 
       

OLS quadratic tracking 0.02% 1.16% 0.0177 0.06% 0.82% 0.0772 
Constr. quadratic tracking 0.02% 1.14% 0.0188 0.06% 0.82% 0.0779 
       

(Investing into) index 0.02% 1.19% 0.0189 0.10% 0.71% 0.1378 
        
        

Source: the authors. 
 
Table 3 manifests another property of the approaches: for each 
of the samples, no matter whether in the in-sample period or in 
the out-of-sample period, variability of returns found with the 
portfolios constructed by means of constrained quadratic 
tracking is lower than with those constructed by means of the 
unconstrained OLS quadratic tracking. This is further shown in 
higher values of the Sharpe ratio for the constrained quadratic 
tracking method. This might also be interpreted as an advantage 
of constrained quadratic tracking over unconstrained OLS 
quadratic tracking as the former method delivers more compact 
portfolios than the latter (of course, compact in terms of 
variability of portfolio returns). Moreover, it seems that the 
classical Markowitzian approach generated better results in the 
in-sample period whilst the robust Markowitzian approach 
seems preferable in the out-sample period. 
 
4 Conclusion 
 
The paper concentrates on portfolio optimization based on 
minimizing quadratic tracking error. Under this method to 
portfolio selection, the aim is to replicate a suitably chosen 
financial index so that the selected portfolio is as close as 
possible to the index with respect to the quadratic tracking error. 
This explains the address of the approach, quadratic index 
tracking After a brief introduction of the methodology, an 
empirical exercise was undertaken so as to ascertain behaviour 
of this method in comparison to the traditional Markowitzian 
approach. A total of four random samples from stocks 
represented in the S&P 500 Index were considered and for each 
sample four portfolios were independently constructed 
replicating the S&P 500 Index. Two methods were quadratic 
tracking methods (the unrestricted OLS quadratic tracking and 
the restricted quadratic tracking) and two methods were 
traditional Markowitzian methods (the method using non-robust 
inputs and its robust alternative). Constrained quadratic tracking 
produce portfolios with lover variability than unconstrained OLS 
tracking, which leads to higher Sharpe ratios. The results of the 
empirical study conducted do not permit unequivocally to state 
as to whether the traditional Markowitzian approach or the 
tracking error approach is preferable. Some distortions may be 
caused by the fact that both of these approaches neglect 

information on long-term trends encoded in asset prices, which 
may be seen as a deficiency of the methods. Newer approaches 
are founded on the concept of cointegration. Cointegration is a 
statistical property of time series that permits modelling non-
stationary asset prices instead of stationary asset returns. As 
financial asset prices are non-stationary with a long memory, the 
cointegration analysis can be utilized to uncover the complex 
information in their trends and to explain more aptly their 
behaviour in the long run. This awareness stimulates further 
interest with the authors who will focus upon portfolio tracking 
based on the cointegration analysis in their future research. 
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