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Abstract. A lot of energy, by machines that are unemployed, it is a waste. In this paper 
during the workshop on the issue of permutations with limited buffers and energy 
considerations will be discussed. The goal is minimizing total system cost that is 
included energy costs and overhead machinery. For a number of periods of 
unemployment is minimized to reduce energy waste with limited capacity buffers 
between two consecutive machine we have taken. Because high computational 
complexity point of review, of the Genetic Algorithm and simulated annealing is used 
to solve it. Three sets of problems with small, medium and large for the performance 
of the algorithm is established that the results obtained the proper functioning of both 
the algorithm and the dominance compared with simulated annealing genetic 
algorithm for all aspects of the show. 
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1. Introduction 

Our planet has recently encountered a serious issue on fuel 
reduction, carbon dioxide emission and global Warming, 
because of the vast usage of energy resources. Industrial sector 
accounts for 31% of energy consumption and 36% of carbon 
dioxide emission (Bruzzone et al. 2012). 34% of energy was 
consumed by manufacturing departments in USA in 2006 (Fang 
et al. 2011). Saving energy is an important issue and many 
researchers have focused on this subject to find strategies to 
reduce its consumption. Some international standards (EN 
16001, ISO 50001) have been designed to manage the energy 
consumption of industrial plants and other sectors (Bruzzone et 
al. 2012). In this article we present a method that aims to select 
the optimum sequence work and unemployment as well as the 
interval of the machine must be idle or turned off and turned on 
again to continue operation (launch), So that the total cost of the 
overhead costs of equipment and systems that minimize their 
energy costs. 

2. Literature review  

A great amount of energy is being used in industry and it’s very 
important to utilize proper policies that can reduce the energy 
consumption in this sector. Because of the importance of the 
energy consumption, many researchers have been attracted to 
this area and some investigations have been done recently. There 
are various strategies to prevent the waste of energy in industry 
that have been studied so far. One of the strategies is to turn the 
machines on and off while they are not processing any job. 
Mouzon and Yildirim (2008), introduced a multi-objective 
mathematical model for the mentioned strategy on a single 
machine, they tried to optimize the total tardiness and total 
energy consumption of the system by deciding the start time and 
the length of turn off/turn on periods while the machine is idle. 
They considered release date of jobs in the model and proved 
their problem is in the set of NP-hard problems so they utilized a 
randomized multi-objective adaptive search meta-heuristic to 
solve the problem. Liu et al. (2013), studied a similar problem 
for job shop environment. They assumed that each machine has 
three levels of power consumption: idle power, switched into 
run-time power and the process power. They proposed a bi-
objective mathematical model. The objective included total 
electricity consumption and total weighted tardiness. A non-
dominant Sorting Genetic Algorithm was employed as the 
solving method to obtain a proper pareto-front for the problem. 
Dai et al. (2013), investigated the flexible flowshop problem by 
considering the energy consumption. A multi-objective 

mathematical model and an improved genetic-simulated 
annealing algorithm were presented in their paper to obtain a 
trade-off between makespan and total energy consumption. In 
many industrialized countries the time of day has a significant 
influence on the price of the power consumption. Time of the 
day is usually divided in to three parts: peak load, mid-peak load, 
off-peak load. The peak time will lead to the most power cost so 
the goal is to schedule the jobs in off-peak time as the first 
priority and mid- peak time as the second and scape scheduling 
in peak time. Moon et al. (2013), studied the unrelated parallel 
machine scheduling problem in a 24 hour of a day divided to 
peak, mid-peak and off-peak to minimize the weighted sum of 
makespan and time dependent electricity cost. They suggested a 
hybrid genetic algorithm to solve the problem. Hybrid flowshop 
scheduling problem considering time dependent electricity cost 
is studied by Luo et al. (2013), they presented a new ant colony 
optimization meta-heuristic to solve the problem. Problem of 
scheduling a single machine considering variable energy prices 
during a day was investigated by Shrouf et al. (2014). They 
proposed a mathematical model and solved the problem by 
genetic algorithm. In industry one of the most effective factors 
that influence the energy cost of workshops, is their peak power 
consumption. Peak power is the maximum amount of the power 
is being used during a specific time period, if a workshop can 
reduce its peak power it can save a great amount of energy cost, 
the best solution to do so is to omit the overlap of the processing 
jobs at any time of the planning horizon but in other hand in will 
led to the maximization of time-based objectives such as 
makespan, so the goal is to find a trade-off between these 
objectives. Bruzzone et al. (2012), studied the flexible flowshop 
problem by limiting the peak power of the system and proposed 
a Mixed Integer Programming (MIP) model to minimize the sum 
of makespan and total tardiness. They provided a randomized 
neighborhood Search to solve the problem. Fang et al. (2013), 
studied the flowshop scheduling problem with peak power 
constraint and investigated both mathematical programming and 
combinatorial approaches to this problem. There is another way 
to decline power consumption of a workshop, in this strategy the 
manufacturer have to decide which job have to be done with 
which speed on each machine to reduce energy factors such as 
peak power or total power consumption. The flowshop 
scheduling problem with the objective function of makespan, 
peak total power and carbon footprint has been studied by Fang 
et al. (2011), in this problem they assumed each machine has 
multiple speeds, and the suitable speed has to be chosen for each 
one of jobs in the sequence. A multi-objective mathematical 
programming model has been presented for the problem. 
Strusevich, (1995) studied two-machine flowshop problem with 
no-wait while the machine speeds are controllable. He described 
an algorithm to solve the problem. Fang and Lin (2013), 
investigated the parallel machine scheduling problem to 
minimize total weighted tardiness and power cost. They 
presented a mathematical model for the problem. The purpose of 
the problem was to assign the products to parallel machines 
meanwhile the most suitable processing speed has to be selected 
for each job on each machine it is assigned to. They proposed 
two heuristics to solve the problem and used particle swarm 
optimization (PSO) to compare the solutions. Sharma et al. 
(2015), examined the so-called econological speed-scaling 
scheduling problem for multi-part multi-machine setup operating 
under TOU tariffs. The aim is to minimize the electricity cost 
and environmental impact for a target production quota by using 
a multi-criterion meta-heuristic optimization. Mikhaylidi et al. 
(2015), studied a manufacturing operations scheduling problem 
under TOU tariffs with a rechargeable battery. They proposed a 
dynamic programming algorithm to decide the time to process 
each operation such that the total electricity consumption and 
operations postponement penalty costs are minimized. 
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3. Problem description 

The permutation flow shop scheduling with limited buffers 
considered in this paper can be described as follows. There are n 
jobs  ܬ = {1, 2, … , ݊} and m machines ܯ = {1, 2, … , ݉}. Each of 
the n jobs is to be sequentially processed on through machine 1~݉. At any time, no job can be processed on more than one 
machine, while no machine can process more than one job 
simultaneously. The processing time of job  j on machine i is 
given as ݐ௜௝. Between each successive pairs of machines i and i 
−1 there exist a buffer with the size ܾ (i.e., at most ܾ jobs can be 
held simultaneously), and jobs obey the FIFO (first in first out) 
rule in each buffer. Besides, the permutation of all jobs to be 
processed on each machine is the same. Drake et al. (2006) 
realised that in manufacturing environment, large quantities of 
energy are consumed by non-bottleneck machines as they lie 
idle, and that whenever a machine or is turn on or turn off, there 
are significant amounts of start-up or shut-down energy 
consumption. As a result, we have to decide at the time that the 
machine remains idle, turn it off and restart it to continue 
operations or put the machine in stand by mode. For this 
purpose, Mouzon and Yildirim (2008) proposed formula (1) in 
single machine environment.  ܾݐ = ݔܽ݉ ቄா௡௘௥௚௬ೞ೐೟ೠ೛௉௢௪௘௥೔೏೗೐ , ௦ܶ௘௧௨௣ቅ                             (1) 

In the above formula tb is defined as the least amount of duration 
required for a turn off/turn on operation (i.e. time required for a 
setup) and the amount of time for which a turn off/turn on 
operation is logical instead of running the machine at ݕ݃ݎ݁݊ܧ .ݕܾ ݀݊ܽݐݏ௦௘௧௨௣,  ܲݎ݁ݓ݋௜ௗ௟௘ and ௦ܶ௘௧௨௣ are the energy 
needed to setting up the machine, the power of idle working and 
the time needed to set up the machine respectively. In this paper, 
because we work on flow shop, we calculate ܾݐ for each 
machine, so the formula (1) is changed to (2): 

௜ܾݐ                                                 (2) = ݔܽ݉ ቄ௘௦೔௣௜೔ ,   ௜ቅݏݐ

In the above formula ݁ݏ௜, ݅݌௜ and ݏݐ௜ are set up energy, idle 
power and set up time length for the machine i respectively. In 
the above formula ܾݐ௜ is defined as follows: 

If idle time of machine i is larger than ܾݐ௜, then ݊݋ ݊ݎݑݐ/݂݂݋ ݊ݎݑݐ option is selected and if it is less than or equal to ܾݐ௜, 
then ݕܾ ݀݊ܽݐݏ option is selected. 

 

Fig.1 ࢏࢈࢚ = ࢞ࢇ࢓ ቄ࢏࢏࢖࢏࢙ࢋ , ቅ࢏࢙࢚ =  ࢏࢏࢖࢏࢙ࢋ

In the above graph the ݕܾ ݀݊ܽݐݏ line is the time that the job 
stays on machine and the machine is ݕܾ ݀݊ܽݐݏ mode, i.e. the 
state that the machine does not turns off so that there is no need 
to energy while starting. So in this state it uses fixed energy so 
that it has a linear diagram with time. The ݊݋ ݊ݎݑݐ/݂݂݋ ݊ݎݑݐ 
line is about the time that the job stays on machine and we turn it 
off and we start it again for the operation. So fixed energy is 
needed for setting up. It is apparent in figure 1 that when the 
time length of the idle is less than ܾݐ௜, we should machine i ݕܾ ݀݊ܽݐݏ and when the time length of the idle is more than ܾݐ௜ 
the machine i should be turned off and start it again for the 
operation. 

 

 

The objective function of the problem that we are considering is 
composed of two parts, the first part is about overhead costs of 
machines and the second part is about consumed electric costs. 
Obtaining departure time of the last processed job on the last 
machine and multiplying by the overhead cost of all machines 
(c), the overhead cost of the all machinery is calculated. The 
second part of objective function is about electric consumption 
of machinery. It is assumed that electric consumption of 
machines is consist of job processing energy (the energy that is 
consumed for operation on the job) and stand by energy (the 
energy the machine uses while stand by work) and set up energy 
(the energy that is used for setting the machine up). For 
obtaining the set up energy of machine i for a special operation 
we use formula (3). In this formula ݁ݏ௜ and ܶ݋ ௜݂௢ are setup 
energy of a machine i and a binary variable which if the turn 
off/turn on operation on machine i between positions of o and 
o+1 was done that variable would be 1 and otherwise it would be 
zero respectively. 

 

For obtaining stand by energy of machine i for a special 
operation we use formula (4) which in it is refereed in Halliday 
et al. (2010). In this formula ݅݌௜ and ܵܦܥ௜௢ show the idle power 
of machine i and the the time length of idle between positions of 
o and o+1 for machine i which in this time length machine i is 
ready to start (stand by). 

 

By adding the values of equation (3) and (4) and multiplying that 
value with total electricity costs (݁ܿ), we can get the energy cost 
of the system and then we will get the total system cost by 
adding the energy costs with overhead costs. Note that the total 
processing energy (∑ ∑ ௜ܲݐ௜௝௡௝ୀଵ௠௜ୀଵ ) is not included in the 
optimization problem, since it is a fixed constant regardless of 
the sequence. In this formula ௜ܲ and ݐ௜௝ are processing power of 
machine i and processing time of job j on machine i respectively. 

Assumptions contained in the question under consideration 
include: 

 Preemption in jobs is not allowed. 
 An operation cannot be performed by more than one 

machine at the same time. 
 Each machine can process at most one job at a time. 
 Jobs are independent of each other. 
 All parameters are certain. 
 Buffer space is limited. 
 Two types of energy that are intended for the machine, 

including total setup energy and total stand by energy. 
 All jobs have equal priorities. 
 Machines are so flexible, so that we can turn them off and 

on any time we need. 
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4. Solution method  

The studied problem is strongly NP-hard. Therefore, two meta-
heuristic algorithms: a genetic algorithm (GA) and a simulated 
annealing (SA) algorithm are proposed to solve the problem. 

4.1 Genetic algorithm  

The genetic algorithm was introduced in 1970 by Holland. It’s 
an efficient stochastic search method that has been used by many 
researchers in various fields such as scheduling problems. This 
algorithm is a kind of evolutionary algorithms and is inspired by 
natural behavior of human body. In the first step it starts by an 
initial population (a set of solutions), which are coded as a 
sequence of numbers, called chromosome. New chromosomes 
(offsprings) are created by applying crossover and mutation 
operations to the parents. Crossover operator creates new 
offsprings by exchanging some parts of the selected parents, and 
the mutation operator tries to make slight changes in the parents 
by swapping its elements or other known methods. The 
algorithm uses a fitness function to evaluate the quality of 
existing solutions to select the elitist ones and create the next 
generation by probabilistic methods. The outline of the proposed 
genetic algorithm is given in Fig. 3. 

 

Fig. 3 Encoding, Initial solution and fitness function of GA 

4.1.1 Encoding 

Showing the chromosome response, the order of jobs is obtained. 
So the refereed chromosome is defined so that the first number 
of chromosome from the left shows the number of first job of 
order and the second number of chromosome from the left shows 
the number of the second job of the order and so on. So the 
length of the chromosome is ݊. For clarification an example is 
given in Table 1. In that example it is assumed that four jobs are 
there for processing. The numbers 2,3,4 and 1 shows the first, 
the second, the third and the last job of the order.        

Table 1: Chromosome representation 

2 3 4 1 
 

4.1.2 Initial population  

Two initial populations are used in the algorithm, and the other 
populations are generated randomly. Two methods are used to 
generate different sequences of jobs. In the first method, we use 

the well-known NEH1 method to generate the sequence of jobs, 
the second method is a SPT2-based heuristic. 

4.1.3 Crossover  

Crossover is a significant operator to create the next generation. 
Two parents have to be selected among the existing solutions to 
create crossover offsprings. The algorithm tries to select the best 
solutions as parents to obtain decent offsprings with suitable 
fitness values. There are two common ways to select parents: 
Roulette wheel, Tournament. In the proposed algorithm, Roulette 
wheel is used as the selection operator. Parents are selected 
according to their fitness. Better solutions have more chances to 
be selected. After the parents are selected, one point crossover is 
used to generate new offsprings. After the crossover is 
implemented, some offsprings may need to be reformed to 
become a feasible solution. It occurs because of the identicality 
of some job numbers in the chromosome. Reformers remove the 
job number replications and replace the missing job numbers in 
the blank places. For more illustration of the crossover operation 
see Figure 4. Suppose we have nine jobs and the break-point is 6. 
As it is shown in offspring 1, job number 6 is repeated two 
times. The same situation is happened in offspring 2 for job 3, 
therefore, a reformation is done in the next step to correct the 
chromosomes. 

 

                                                            
1 Nawaz, Enscore, Ham   
2 Shortest Processing Time  
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Fig. 4 An example of crossover operation  for nine jobs 

4.1.4 Mutation  

After crossover, the strings are subjected to mutation. Mutation 
is a genetic operator used to maintain genetic diversity from one 
generation of a population of genetic algorithm chromosomes to 
the next. It is analogous to biological mutation. Mutation alters 
one or more gene values in a chromosome from its initial state. 
In mutation, the solution may change entirely from the previous 
solution. Hence GA can come to better solution by using 
mutation. Mutation occurs during evolution according to a user-
definable mutation probability. This probability should be set 
low. If it is set too high, the search will turn into a primitive 
random search. The purpose of mutation in GAs is preserving 
and introducing diversity. Mutation should allow the algorithm 
to avoid local minima by preventing the population of 
chromosomes from becoming too similar to each other, thus 
slowing or even stopping evolution. This reasoning also explains 
the fact that most GA systems avoid only taking the fittest of the 
population in generating the next but rather a random (or semi-
random) selection with a weighting toward those that are fitter. 
Referring to Abdoun et al. (2012), five modes of mutation are 
used in the proposed algorithm to keep diversity of 
chromosomes in all iterations. 

4.1.4.1 Twors Mutation 

Twors mutation allows the exchange of position of two genes 
randomly chosen. 

  

Fig. 5 Mutation operator TWORS 

 

4.1.4.2 Centre inverse mutation (CIM) 

The chromosome is divided into two sections. All genes in each 
section are copied and then inversely placed in the same section 
of a child.  

 

 

 

Fig. 6 Mutation operator CIM 

4.1.4.3 Reverse Sequence Mutation (RSM) 

In the reverse sequence mutation operator, we take a sequence S 
limited by two positions i and j randomly chosen, such that i<j. 
The gene order in this sequence will be reversed by the same 

way as what has been covered in the previous operation. The 
algorithm (Figure 7) shows the implementation of this mutation 
operator. 

 

 

Fig. 7 Mutation operator RSM 
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4.1.4.4 Throas Mutation 

We construct a sequence of three genes: the first is selected 
randomly and the two others are those two successors. Then, the 
last becomes the first of the sequence, the second becomes last 
and the first becomes the second in the sequence. 

  

4.1.4.5 Thrors Mutation 

Three genes are chosen randomly which shall take the different 
positions not necessarily successive i < j < l. the gene of the 
position i becomes in the position j and the one who was at this 
position will take the position l and the gene that has held this 
position takes the position i . 

 

Fig. 8 GA Operators

4.1.5 Fitness Function  

After performance of mutation and crossover operators, the 
problem has three population which is consist of offsprings, 
main population and mutants. So the chromosome of these three 
population according to the quality of their answers and 
depending on the objective function of the problem are joined 
together and compose the composed population. In other words 
the corresponding amount of each chromosome is in the 
objective function of the problem and the chromosomes with the 
best answer is chosen. in this paper the amount of the objective 
function is consist of energy costs and the costs related to 
makespan which is put according to the amount of buffers 
obtained among machines and put as fitness of each 
chromosome. As the size of the buffer gets bigger, the amount of 
objective function decreases. The reason is that bigger size of the 
buffer can decrease the number of blocks (blocking product 
line). So the number of the times that the machine goes stand by 
and also the number of the times that the machine shuts down 
and starts again for the operation (setup) decreases and so less 
energy is used. And also growing the size of buffer makespan 
decreases, so the total amount of objective function decreases 
and the fitness increases.                                                                                                                                                  

4.2 Simulated annealing  

Kirkpatrick et al. (1983), were the first researchers who 
introduced simulated annealing. Simulated annealing (SA) is a 
stochastic iterative search algorithm which was successfully 
implemented by many researchers to solve different optimization 
problems. The first step of this algorithm deals with the creation 
of initial solution, then a specific number of neighbors is created 
for initial solution. In the next step, the neighbors of each 
solution are compared to each other and the best neighbor is 
selected. The difference between the objective (fitness) values of 
a solution (ܵ) and its neighbor (ܵᇱ) is calculated as follows: (ܵᇱ) −  .ܵ denotes the fitness value of solution (ܵ)ܥ where , (ܵ)ܥ
In the problems with minimization objective functions, if < 0 , 
the base solution (ܵ) is omitted and the best neighbor is replaced 
with it. Because we have obtained a solution with better 
objective value, but if ܧ ≥ 0, then the acceptance of the new 
(neighbor) solution depends on an exponential probability 
function called Boltzmann. It helps SA not to be trapped in local 
optimums, and its formula is as follows: ݎ݌ = exp (−ܧൗܶ ),   
where T is the Temperature of the algorithm which is reduced by 
the means of a cooling function in each iteration. This process is 
repeated for all solutions in all iterations until the stopping 
criterion is met. The outline of the algorithm is shown in Fig. 9.  

 

Fig. 9 Encoding, Initial solution and fitness function of SA 

Encoding form, initial solutions and fitness function of SA are 
the same as GA and the same methods used in mutation of GA 
are used to create new neighbors of each solution in SA. 

4.3. Parameters of GA and SA  

Meta-heuristic algorithms are too sensitive to the value of their 
parameters and it is important to select a suitable parameter set 
for each algorithm. In this paper we selected the most effective 
parameters which seem to have efficient influences on the 
solutions. GA and SA algorithms are implemented to solve the 
problem with different solve the problem with different 
parameters and finally the most proper parameter is selected 
among the others Parameters of GA have set as follows. 

 ݌௖, is the crossover percentage. Suppose the population size 
(popsize) is set to be 100, in each iteration we have to 
create 100 other offsprings, merge them with the old ones 
and select the best 100 chromosomes. There are two 
operators to create new offsprings, namely crossover and 
mutation. ݌௖ is the proportion of the new offsprings made 
by crossover operator compared to the number of 
offsprings made by mutation. For example if  ݌௖ = 0.7 , we 
will have 70 of the new offsprings made by crossover 
operator. 

 ݌௠, is the mutation percentage. In the implemented GA, ݌௠ = 1 − ௠݌ ,௖ . Hence following the above example݌ = 1 − 0.7 and the number of new offsprings made by 
mutation operator will be equal to 30. 

 Stop criterion is defined in section 5. 

Parameters of SA have set as follows. 
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 Number of neighbors, is the number of new neighbors 
created for each solution. 

 ଴ܶ, is the initial temperature. We have used the formula ଴ܶ = ܧ− ln( ଴ܲ)ൗ  , to obtain the value of ଴ܶ, where E is the 

difference between the objective values of a solution and 
its best neighbor, ଴ܲ is the acceptance probability of 
Boltzmann function in the 1௦௧ iteration. The obtained value 
of  ଴ܶ in small size problems is 5.12 and for large scale 
problems we have used the value 6.64. 

 0) ߙ < ߙ < 1) , is the cooling ratio. It is applied to reduce 
the temperature as the algorithm goes on. 

 Stop criterion, is defined in section 5 (same as GA). 

5. Computational experiments  

Because of the lack of benchmarks for the studied problem, we 
have generated some sample instances to investigate the 
efficiency effectiveness of the proposed algorithms. Three types 
of instances have been generated, namely small size (ARFS), 
medium size (ARFM) and large size (ARFL) problems. 40 small 
size, 60 medium size and 48 large scale problems have been 
generated. Each problem instance is defined by 3 parameters 
which describe the size of the problem, these parameters are the 
number jobs (n), the number of machines (m), the number of 
buffers (b). For small size problems, number of jobs, machines 
and buffers are as follows respectively: {4, 6}, {2, 3, 5, 7}, {0,1,2,4, ∞}, for medium size instances, the numbers are {8, 10, 
15}, {2, 3, 5, 7}, {0,1,2,4, ∞}  and for large scale problems, the 
numbers are: {20, 30, 40, 50}, {10, 12, 15}, {0,2,4, ∞}. 
The minimum processing time of jobs, i.e. the time with full 
power of machines are generated randomly by the uniform 
distribution [1,100]. Set up energy of machine of each machine 

is generated by the uniform distribution of ቂଵଵଵ଴ , ହ଴ଵ଴ቃ. Idle power of 

each machine is generated by the uniform distribution of ቂ ଶଵ଴ , ହ଴ଵ଴ቃ. 

Set up time of each machine is generated by the uniform 
distribution of ሾ1,20ሿ. Total overhead costs is generated by the 

uniform distribution of ቂ ହ଺଴ , ହ଴଺଴ቃ × ݉, that ݉ is number of 

machines. Total electricity costs is generated by the uniform 

distribution of ቂ ସ଺଴ , ଷ଴଺଴ቃ. 

We have used five different values of 0.1, 0.3, 0.5, 0.7 and 0.9 
for crossover percentage (݌௖) in GA, and therefore the values of ݌௠ will be equal to 0.9, 0.7, 0.5, 0.3 and 0.1 respectively. 

As mentioned in section 4, we have used the formula: ଴ܶ ܧ−= ln( ଴ܲ)ൗ  to calculate the values of ଴ܶ, and two different values 

have been obtained for small and large size problems. The values 

20, 30 and 0.97, 0.985, 0.99 are selected for parameters ݊݊,  ,ߙ
respectively. So we have six combinations of the values of these 
two parameters for SA. 

For small size problems, we can obtain the optimal solutions by 
using Lingo software. But because of the complexity of the 
problem, Lingo is unable to obtain the optimal solutions in time 
limit of 300 minutes for some medium and all large size 
problems. 

The results of the numerical experiments are given in Tables 2 to 
8. The bolded values in column four of Tables 1 to 4 are the 
optimal solutions obtained by Lingo. 

We have used equation (5) to calculate Dev value for the 
obtained solutions. 

 

In which ܱܾ݆(ܣܩ,  shows the the answer of GA or SA (ܣܵ
algorithms and ݐݏ݁ܤ ܱܾ݆ shows the best answer obtained by the 
lingo software and SA and GA algorithms.                                                         

     According to Tables 2 & 3, genetic algorithm with crossover 
percentage of 0.1 has the best performance and the lowest Dev 
value for small size problems in comparison with the other 
parameter settings. Tables 4 and 5 show the same results for 
medium size problems.  

Figure 10 shows the objective values obtained by Lingo and GA 
with crossover percentage of 0.1 for small and medium size 
problems. It shows that the performance of GA is better than 
Lingo to obtain optimal or near optimum solutions. 

In the large size problems for obtaining the amount of Dev we 
use (6) formula. In this formula, ܱܾ݆(ܣܩ,  shows the answer (ܣܵ
of GA or SA algorithms and  ݐݏ݁ܤ ܱܾ݆ shows the best answer 
obtained by SA and GA algorithms.                                                     

 

Tables 6, 7, 8 show the objective and Dev values for large size 
problems. 

 

  

Fig. 10 Comparison between the objectives of Lingo and GA
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To have a fair comparison between two algorithms, a time-based 
stop criterion of 0.2 × ݊ × ݉ × (ܾ + 1) seconds is used for both 
algorithms. Table 6 shows the best, worst and mean objective 
values obtained by GA for each values of after five runs for each 
instance, and Table 7 shows the results obtained by SA. Bolded 
values in these tables are the best objective values those have 

been reached by the use of all 11 different parameter setting of 
both GA and SA algorithms. Table 7 shows the Dev value of all 
different cases of GA and SA and the mean deviations show that 
GA with the ݌௖ of 0.1 has the best performance for large scale 
problems in comparison with the others. 

 
Table 3 Objective and Dev values of Lingo and GA for small size problems 

 

Instance 
Name 

n m b Lingo Makespan ݌௖ ௖݌ 0.1 = ௖݌ 0.3 = = 0.9 

Mean Dev Mean Dev Mean Dev 

ARFS1 4 2 0 432.1326 317 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000 
ARFS2 4 2 1 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS3 4 2 2 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS4 4 2 4 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS5 4 2 ∞ 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS6 4 3 0 310.9288 286 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000 

ARFS7 4 3 1 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 

ARFS8 4 3 2 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 

ARFS9 4 3 4 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 

ARFS10 4 3 ∞ 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 

ARFS11 4 5 0 1671.6182 468 1671.6182 0.00000 1671.6182 0.00000 1671.6182 0.00000 

ARFS12 4 5 1 1587.6182 425 1587.6182 0.00000 1587.6182 0.00000 1587.6182 0.00000 

ARFS13 4 5 2 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 

ARFS14 4 5 4 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 

ARFS15 4 5 ∞ 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 

ARFS16 4 7 0 2676.8394 556 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000 

ARFS17 4 7 1 2673.4894 
2673 3094

552 2673.4894 
2673 3094

0.00000 2673.4894 
2673 3094

0.00000 2673.4894 
2673 3094

0.00000 

ARFS18 4 7 2 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS19 4 7 4 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS20 4 7 ∞ 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS21 6 2 0 95.0842 351 95.0842 0.00000 95.0842 0.00000 95.1397 0.05800 

ARFS22 6 2 1 89.5112 334 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000 

ARFS23 6 2 2 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS24 6 2 4 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS25 6 2 ∞ 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS26 6 3 0 132.8124 528 132.8124 0.00000 132.8124 0.00000 133.7791 0.72700 

ARFS27 6 3 1 123.4331 453 123.4331 0.00000 123.4331 0.00000 123.833 0.32300 

ARFS28 6 3 2 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.3664 0.10800 

ARFS29 6 3 4 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 

ARFS30 6 3 ∞ 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 

ARFS31 6 5 0 2131.2345 625 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000 

ARFS32 6 5 1 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS33 6 5 2 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS34 6 5 4 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS35 6 5 ∞ 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS36 6 7 0 2930.88 862 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000 

ARFS37 6 7 1 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

ARFS38 6 7 2 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

ARFS39 6 7 4 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

ARFS40 6 7 ∞ 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

Mean 
      

0.00000 
 

0.00000 
 

0.03040 

 
Table 4 Objective and Dev values of Lingo and SA for small size problems 

 

Instance 
Name 

n m b Lingo Makespan 

 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Mean Dev 

ARFS1 4 2 0 432.1326 317 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000 
ARFS2 4 2 1 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS3 4 2 2 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS4 4 2 4 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS5 4 2 ∞ 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 

ARFS6 4 3 0 310.9288 286 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000 

ARFS7 4 3 1 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 

ARFS8 4 3 2 267.3215 279 267.3613 0.01500 267.3412 0.00007 267.3412 0.00700 267.3613 0.01500 

ARFS9 4 3 4 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3517 0.01100 267.3215 0.00000 

ARFS10 4 3 ∞ 267.3215 279 267.3215 0.00000 267.3314 0.00400 267.3215 0.00000 267.3215 0.00000 

ARFS11 4 5 0 1671.6182 468 1671.6182 0.00000 1681.6182 0.60000 1671.6182 0.00000 1681.5390 0.60000 

ARFS12 4 5 1 1587.6182 425 1587.6182 0.00000 1587.6182 0.00000 1588.6512 0.06500 1587.6182 0.00000 

ARFS13 4 5 2 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 

ARFS14 4 5 4 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 

ARFS15 4 5 ∞ 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 
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ARFS16 4 7 0 2676.8394 556 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000 

ARFS17 4 7 1 2673.4894 
2673 3094

552 2673.4894 
2673 3094

0.00000 2673.4894 
2673 3094

0.00000 2673.4894 
2673 3094

0.00000 2673.4894 
2673 3094

0.00000 

ARFS18 4 7 2 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS19 4 7 4 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS20 4 7 ∞ 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 

ARFS21 6 2 0 95.0842 351 95.0842 0.00000 95.0842 0.00000 95.0842 0.00000 95.0842 0.00000 

ARFS22 6 2 1 89.5112 334 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000 

ARFS23 6 2 2 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS24 6 2 4 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS25 6 2 ∞ 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 

ARFS26 6 3 0 132.8124 528 132.8124 0.00000 132.8124 0.00000 132.8124 0.00000 132.8124 0.00000 

ARFS27 6 3 1 123.4331 453 123.4331 0.00000 123.4331 0.00000 123.4331 0.00000 123.4331 0.00000 

ARFS28 6 3 2 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 

ARFS29 6 3 4 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 

ARFS30 6 3 ∞ 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 

ARFS31 6 5 0 2131.2345 625 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000 

ARFS32 6 5 1 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS33 6 5 2 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS34 6 5 4 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS35 6 5 ∞ 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 

ARFS36 6 7 0 2930.88 862 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000 

ARFS37 6 7 1 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

ARFS38 6 7 2 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 

ARFS39 6 7 4 2787.29 828 2798.22 0.39200 2797.15 0.35400 2788.39 0.00039 2796.36 0.32500 

ARFS40 6 7 ∞ 2787.29 828 2797.18 0.35500 2787.29 0.00000 2797.14 0.00353 2787.29 0.00000 

Mean 0.01900 0.02400 0.01200 0.02300 

 
 

Table 5 Objective and Dev values of Lingo and GA for medium size problems 
 

Instance 
Name 

n m b Lingo Makespan ݌௖ ௖݌ 0.1 = ௖݌ 0.3 = = 0.9 

Mean Dev Mean Dev Mean Dev 

ARFM1 8 2 0 507.3121 546 507.3121 0.00000 507.3121 0.00000 507.3121 0.00000 

ARFM2 8 2 1 498.9009 434 498.9009 0.00050 499.1509 0.05011 499.7409 0.16837 

ARFM3 8 2 2 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 

ARFM4 8 2 4 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 

ARFM5 8 2 ∞ 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 

ARFM6 8 3 0 630.81 642 630.81 0.00000 630.81 0.00000 630.81 0.00000 

ARFM7 8 3 1 552.15 663 552.15 0.00000 552.15 0.00000 552.53 0.06882 

ARFM8 8 3 2 549.69 629 549.69 0.00000 549.75 0.01092 549.84 0.02729 

ARFM9 8 3 4 549.69 629 549.69 0.00050 549.69 0.00000 549.69 0.00000 

ARFM10 8 3 ∞ 549.69 629 549.69 0.00000 549.69 0.00000 549.69 0.00000 

ARFM11 8 5 0 1598.5583 910 1598.5583 0.00000 1598.5583 0.00000 1601.349 0.17458 

ARFM12 8 5 1 1557.0355 733 1557.0355 0.00000 1562.0662 0.32309 1557.0355 0.00000 

ARFM13 8 5 2 1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.3954 0.02311 

ARFM14 8 5 4 1557.0355 733 1557.0355 0.00000 1557.097 0.00000 1557.3731 0.02168 

ARFM15 8 5 ∞ 1552.0662 700 1552.0662 0.00000 1552.0755 0.00000 1552.0762 0.00064 

ARFM16 8 7 0 3177.487 940 3177.487 
0.01197 

3177.3083 0.00000 3177.43 0.01018 

ARFM17 8 7 1 2974.37 985 2974.37 0.00000 2975 0.02118 2975 0.02118 

ARFM18 8 7 2 2971.15 923 2971.15 0.00050 2971.4417 0.01397 2971.4417 0.01397 

ARFM19 8 7 4 2971.15 923 2971.15 0.00000 2971.4417 0.00000 2971.505 0.01195 

ARFM20 8 7 ∞ 2971.15 923 2971.15 0.00000 2971.4417 0.01128 2971.6283 0.01756 

ARFM21 10 2 0 727.7255 729 727.6255 
0.08437 

727.0121 0.00000 727.5266 0.07077 

ARFM22 10 2 1 718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00392 

ARFM23 10 2 2 718.5122 681 718.5122 0.00050 718.5122 0.00000 718.5122 0.00000 

ARFM24 10 2 4 718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 

ARFM25 10 2 ∞ 718.5122 681 718.5122 0.00000 718.5112 0.00000 718.5122 0.00014 

ARFM26 10 3 0 1315.0115 829 1315.0115 0.00000 1319.3836 0.33248 1315.8957 0.06724 

ARFM27 10 3 1 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1223.494 0.07889 

ARFM28 10 3 2 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.9884 0.03753 

ARFM29 10 3 4 1222.5296 789 
1222.5296 

0.00000 1222.5296 0.00000 1222.8329 0.02481 

ARFM30 10 3 ∞ 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.8329 0.02481 
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Table 6 Objective and Dev values of Lingo and GA for medium size problems 
 

Instance 
Name 

n m b Lingo Makespan ݌௖ ௖݌ 0.1 = ௖݌ 0.3 = = 0.9 

Mean Dev Mean Dev Mean Dev 

ARFM31 10 5 0 3352.0593 1063 3352.0593 0.05096 3351.9173 0.04672 3352.6818 0.06954 

ARFM32 10 5 1 3305.1966 1036 3305.1966 0.04833 3303.6001 0.00000 3308.4358 0.14638 

ARFM33 10 5 2 3283.7372 1010 3283.7372 0.03673 3283.7372 0.03673 3283.7372 0.03673 

ARFM34 10 5 4 3283.7372 1010 3283.7372 0.00000 3283.7372 0.00000 3283.7372 0.00000 

ARFM35 10 5 ∞ 3274.9061 990 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000 

ARFM36 10 7 0 5318.0434 1124 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00668 

ARFM37 10 7 1 5139.9375 1028 5139.9375 0.04449 5139.688 0.03963 5138.0363 0.00748 

ARFM38 10 7 2 5128.0152 1012 5128.0152 0.05224 5126.5662 0.02397 5127.6585 0.04528 

ARFM39 10 7 4 5123.2875 1020 5123.2875 0.03382 5123.66 0.04110 5122.1375 0.01137 

ARFM40 10 7 ∞ 5119.0775 1038 5119.0775 0.01240 5119.7675 0.02588 5119.2463 0.01570 

ARFM41 15 2 0 910.402 853 910.402 0.04236 910.0165 0.00000 910.0815 0.00714 

ARFM42 15 2 1 898.723 761 898.5886 0.27978 897.0869 0.11220 896.0815 0.00000 

ARFM43 15 2 2 898.723 761 898.5886 0.26708 896.912 0.08000 896.7802 0.06530 

ARFM44 15 2 4 898.723 761 896.561 0.10287 895.71 0.00000 896.5114 0.09733 

ARFM45 15 2 ∞ 898.723 761 896.561 0.16009 895.71 0.06502 896.5114 0.15455 

ARFM46 15 3 0 1801.24 1125 1801.24 0.09150 1799.5933 0.00000 1804.5466 0.27525 

ARFM47 15 3 1 1786.9466 1022 1782.9466 0.03553 1782.3133 0.00000 1782.3866 0.00411 

ARFM48 15 3 2 1784.4 973 1782.2 0.16890 1781.3866 0.12318 1781.7266 0.14229 

ARFM49 15 3 4 1781.27 1119 1781.2 0.11118 1781.3266 0.11829 1781.83 0.14659 

ARFM50 15 3 ∞ 1781.27 1119 1781.2 0.17017 1781.3266 0.17729 1781.5033 0.18723 

ARFM51 15 5 0 1945.5209 1287 1945.5209 0.08128 1944.6771 0.03787 1945.1943 0.06448 

ARFM52 15 5 1 1842.97 1062 1835.8887 0.00000 1837.7205 0.09978 1840.6977 0.26194 

ARFM53 15 5 2 1756.62 1052 1733.1944 0.00000 1733.7795 0.03376 1735.7731 0.14878 

ARFM54 15 5 4 1737.433 1063 1733.1028 0.03390 1732.5154 0.00000 1736.2767 0.21710 

ARFM55 15 5 ∞ 1734.45 960 1732.4865 0.09958 1732.0066 0.07185 1733.5913 0.16341 

ARFM56 15 7 0 7113.25 1567 7106.1205 0.00000 7109.8561 0.06221 7107.017 0.02225 

ARFM57 15 7 1 6463.77 1380 6438.2879 0.07591 6433.4041 0.00000 6439.655 0.09716 

ARFM58 15 7 2 6451.37 1508 6409.8226 0.09076 6408.5056 0.07020 6408.8179 0.07507 

ARFM59 15 7 4 6443.723 1480 6356.9092 0.06981 6355.0682 0.04083 6356.6365 0.06552 

ARFM60 15 7 ∞ 6372.13 1288 6340.0028 0.00000 6343.7085 0.05845 6341.8284 0.02879 

Mean 
     

0.03563 0.03746 
 

0.05718 

 
 

Table 7 Objective and Dev values of Lingo and SA for medium size problems 
 

Instance 
Name 

n m b Lingo Makespan 
 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Dev Mean Dev 

ARFM1 8 2 0 
507.3121 546 507.3121 0.00000 507.3121 0.00000 507.3121 0.00000 0.00000 507.3121 0.00000 

ARFM2 8 2 1 
498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000 

ARFM3 8 2 2 
498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000 

ARFM4 8 2 4 

498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000 

ARFM5 8 2 ∞ 

498.9009 434 498.9100 0.00000 498.9009 0.00000 498.9009 0.00000 0.04398 498.9009 0.00000 

ARFM6 8 3 0 
630.81 642 630.81 0.00000 630.81 0.00000 630.81 0.00000 0.00000 630.81 0.00000 

ARFM7 8 3 1 
552.15 663 552.15 0.00000 552.15 0.00000 552.15 0.00000 0.00000 552.15 0.00000 

ARFM8 8 3 2 
549.69 629 549.69 0.00000 549.73 0.00000 549.81 0.02183 0.00000 549.69 0.00000 
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ARFM9 8 3 4 
549.69 629 549.71 0.00000 549.69 0.00000 549.69 0.00000 0.00000 549.80 0.02001 

ARFM10 8 3 ∞ 
549.69 629 549.69 0.00000 549.69 0.00000 549.69 0.00000 0.00000 549.69 0.00000 

ARFM11 8 5 0 
1598.5583 910 1598.5583 0.00000 1598.5671 0.00000 1598.5583 0.00000 0.00000 1598.5583 0.00000 

ARFM12 8 5 1 

1557.0355 733 1557.1241 0.00000 1557.1352 0.00000 1557.0355 0.00000 0.07255 1559.5674 0.16261 

ARFM13 8 5 2 
1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.0355 0.00000 0.00000 1557.0355 0.00000 

ARFM14 8 5 4 
1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.0355 0.00000 000000 1557.0355 0.00000 

ARFM15 8 5 ∞ 
1552.0662 700 1552.0662 0.00000 1552.0662 0.00000 1552.0662 0.00000 0.00000 1552.0662 0.00000 

ARFM16 8 7 0 
3177.487 940 3177.487 0.01197 3177.487 0.01197 3177.487 0.01197 0.01197 3177.487 0.01197 

ARFM17 8 7 1 
2974.37 985 2974.37 0.00000 2974.37 0.00000 2974.37 0.00000 0.00000 2974.37 0.00000 

ARFM18 8 7 2 
2971.15 923 2972.1451 0.03764 2971.15 0.00000 2971.15 0.00000 0.00000 2971.1443 0.00000 

ARFM19 8 7 4 
2971.15 923 2971.15 0.00000 2971.15 0.00000 2971.15 0.00000 0.00000 2971.15 0.00000 

ARFM20 8 7 ∞ 
2971.15 923 2971.1661 0.00000 2971.1743 0.00000 2971.15 0.00000 0.00000 2971.15 0.00000 

ARFM21 10 2 0 
727.7255 729 727.6343 0.08558 727.4466 0.05977 727.6341 0.08556 0.09813 727.7255 0.09813 

ARFM22 10 2 1 
718.5122 681 718.5034 0.00000 718.4849 0.00000 718.4840 0.00000 0.00000 718.5122 0.00000 

ARFM23 10 2 2 
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000 

ARFM24 10 2 4 
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000 

ARFM25 10 2 ∞ 
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000 

ARFM26 10 3 0 
1315.0115 829 1315.0115 0.00000 1315.0115 0.00000 1315.0115 0.00000 0.00000 1315.0115 0.00000 

ARFM27 10 3 1 

1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.5296 0.00000 0.00000 1222.5296 0.00000 

ARFM28 10 3 2 
1222.5296 789 1222.5376 0.00000 1222.5296 0.00000 1222.5481 0.00000 0.00000 1222.5296 0.00000 

ARFM29 10 3 4 

1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.5296 0.00000 0.00000 1222.5296 0.00000 

ARFM30 10 3 ∞ 1222.5296 789 1222.5296 0.00000 
1222.5296 

 
0.00000 

1222.5296 
 

0.00000 0.00000 
1222.5296 

 
0.00000 

 
 

Table 8 Objective and Dev values of Lingo and SA for medium size problems 
 

Instance 
Name 

n m b Lingo Makespan 
 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Mean Dev 

ARFM31 10 5 0 3352.0593 1063 3351.6362 0.00000 3352.0044 0.04932 3352.0418 0.05043 3352.0593 0.05096 

ARFM32 10 5 1 3305.1966 1036 3305.1746 0.03833 3305.1966 0.04833 3305.1966 0.04833 3305.1966 0.04833 

ARFM33 10 5 2 3283.7372 1010 3283.7372 0.04766 3283.7372 0.03673 3283.7372 0.03673 3283.7372 0.03673 

ARFM34 10 5 4 3283.7372 1010 3283.7372 0.03673 3283.7372 0.00000 3283.7372 0.00000 3283.7372 0.00000 

ARFM35 10 5 ∞ 3274.9061 990 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000 

ARFM36 10 7 0 5318.0434 1124 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00000 

ARFM37 10 7 1 5139.9375 1028 5139.9375 0.00000 5139.9375 0.04449 5139.9375 0.04449 5139.9375 0.04449 

ARFM38 10 7 2 5128.0152 1012 5129.1943 0.04449 5129.1774 0.07492 5139.9375 0.28486 5139.9375 0.28486 

ARFM39 10 7 4 5123.2875 1020 5124.956 0.07525 5124.01991 0.04812 5123.2875 0.03382 5124.2341 0.05231 
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ARFM40 10 7 ∞ 5119.0775 1038 5119.0019 0.06640 5119.0118 0.01112 5119.0775 0.01240 5118.4428 0.00000 

ARFM41 15 2 0 910.402 853 910.3212 0.01092 910.2115 0.02143 910.402 0.04236 910.402 0.04236 

ARFM42 15 2 1 898.723 761 898.666 0.03348 898.594 0.28039 898.723 0.29478 897.2341 0.12863 

ARFM43 15 2 2 898.723 761 896.195 0.28842 896.9124 0.08005 898.2150 0.22540 898.723 0.28208 

ARFM44 15 2 4 898.723 761 896.012 0.00000 896.8150 0.13122 896.7112 0.11964 897.1943 0.17357 

ARFM45 15 2 ∞ 898.723 761 895.1963 0.04157 898.723 0.40162 896.1542 0.11464 895.1280 0.00000 

ARFM46 15 3 0 1801.24 1125 1801.24 0.00000 1801.24 0.09150 1800.8141 0.06784 1801.24 0.09150 

ARFM47 15 3 1 1786.9466 1022 1783.9370 0.09150 1783.6050 0.07247 1785.3387 0.16975 1784.6243 0.12966 

ARFM48 15 3 2 1784.4 973 1780.19 0.09110 1779.6112 0.02339 1779.1950 0.00000 1780.4370 0.06981 

ARFM49 15 3 4 1781.27 1119 1779.2219 0.05592 1779.3114 0.00000 1779.2219 0.00000 1781.27 0.11511 

ARFM50 15 3 ∞ 1781.27 1119 1779.1871 0.00000 1778.1741 0.00000 1781.27 0.17411 1778.237 0.00000 

ARFM51 15 5 0 1945.5209 1287 1944.922 0.05697 1944.1774 0.01217 1944.2050 0.01359 1945.388 0.07444 

ARFM52 15 5 1 1842.97 1062 1840.568 0.05047 1840.7544 0.26503 1839.371 0.18968 1839.5367 0.19870 

ARFM53 15 5 2 1756.62 1052 1744.9271 0.25488 1740.9066 0.44497 1739.7095 0.37590 1739.637 0.37172 

ARFM54 15 5 4 1737.433 1063 1735.906 0.67694 1735.7441 0.18636 1733.7536 0.07147 1735.196 0.15472 

ARFM55 15 5 ∞ 1734.45 960 1732.186 0.19570 1731.295 0.03074 1732.687 0.11116 1731.225 0.02669 

ARFM56 15 7 0 7113.25 1567 7108.713 0.08222 7108.435 0.04221 7106.5365 0.01549 7105.4357 0.00000 

ARFM57 15 7 1 6463.77 1380 6442.763 0.04612 6441.75 0.12973 6435.2766 0.02911 6441.4266 0.12470 

ARFM58 15 7 2 6451.37 1508 6421.401 0.14547 6419.7475 0.24574 
6417.0431 
3313131 0.20351 6419.23 0.23766 

ARFM59 15 7 4 6443.723 1480 6368.6273 0.27156 6365.5124 0.20524 6368.476 0.25190 6367.538 0.23713 

ARFM60 15 7 ∞ 6372.13 1288 6344.21 
0.25428 6341.143 0.01798 6343.14 0.04948 6344.151 0.06543 

Mean 
     

 0.05152  0.05111  0.05250  0.05557 

 

The mathematical model is coded and solved by the modeling 
language Lingo 9.0. Meta-heuristic algorithms are coded in 
Matlab software, version 2013. A personal computer with the 
configuration of Core i5 2.5 GHz and 4 GB Ram is applied to 
solve the test problems. 

In the next part the best answers obtained from lingo software 
and two GA and SA algorithms in the 8 to 10 tables are 
examined, and the percentage of using stand by and turn off/turn 
on in the answers according to the factor of the buffer numbers 
in theses tables are presented. As shown in the tables increasing 
the amount of buffer factor the number of setting up decreases. 
So the number of stand by increases and the number of turn 
off/turn on decreases. 

Table 9: Percentage of using stand by and turn off/turn on in 
small size problems according to the factor of the buffer numbers 
 

Buffer Stand by 
turn 
off/turn on 

0 24% 76% 

1 32% 68% 

2 44% 56% 

4 59% 41% 

∞ 86% 14% 
 
 
Table 10: Percentage of using stand by and turn off/turn on in 
medium size problems according to the factor of the buffer 
numbers 
 

Buffer Stand by 
turn 
off/turn on 

0 27% 73% 

1 35% 65% 

2 42% 58% 

4 63% 37% 

∞ 91% 9% 
 

 
 
Table 11: Percentage of using stand by and turn off/turn on in 
large size problems according to the factor of the buffer numbers 
 

Buffer Stand by 
turn 
off/turn on 

0 21% 79% 

2 52% 48% 

4 67% 33% 

∞ 97% 3% 
  
5. Conclusion 
 
In this paper we investigated the permutation flow shop 
scheduling problem with limited buffers and the objectives of the 
minimization of total energy consumption and makespan. We 
formulated a mathematical model for the described problem. 
Since the proposed problem is NP-hard, so two well-known 
meta-heuristics namely; genetic algorithm and simulated 
annealing, have been used to produce approximate solutions in a 
reasonable time. We generated three different sizes of the 
problem, small, medium and large size problems. Lingo was able 
to give us the exact solution for all small size problems in time 
limit of 300 minutes, but for medium and large scale problems, 
Lingo is inefficient, so GA and SA have been used to reach near 
optimal solutions. The computational experiments show that 
with the used parameter settings of the algorithms for all 
problem sizes GA outperforms SA. At the end the best answers 
obtained from lingo software and two GA and SA algorithms in 
the 8 to 10 tables are examined, and the percentage of using 
stand by and turn off/turn on in the answers according to the 
factor of the buffer numbers in theses tables are presented. For 
future work it's suggested to use some other metaheuristic 
methods to solve the problem and compare the solutions with the 
existing ones, or maybe suggest a new heuristic for the problem. 
In our future research, the proposed algorithm might be extended 
to other machine environments such as job shop. Another 
extension is considering multi-objective optimization method 
such as the Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II) for the problem. 
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