
A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

MODELING AND SOLVING THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM WITH
LIMITED BUFFERS AND THE OBJECTIVES OF THE MINIMIZATION OF TOTAL ENERGY
CONSUMPTION AND MAKESPAN

aAMIN RASI RAHIMI,b MOHSEN ZIAEE

aDepartment of industrial engineering, University of Bojnord,
Emam Street, Bojnord, Iran,
bDepartment of industrial engineering, University of Bojnord,
Emam Street, Bojnord, Iran.

email: aamin_ras_boj@yahoo.com, bm.ziaee.1789@hotmail.com

Abstract. A lot of energy, by machines that are unemployed, it is a waste. In this paper
during the workshop on the issue of permutations with limited buffers and energy
considerations will be discussed. The goal is minimizing total system cost that is
included energy costs and overhead machinery. For a number of periods of
unemployment is minimized to reduce energy waste with limited capacity buffers
between two consecutive machine we have taken. Because high computational
complexity point of review, of the Genetic Algorithm and simulated annealing is used
to solve it. Three sets of problems with small, medium and large for the performance
of the algorithm is established that the results obtained the proper functioning of both
the algorithm and the dominance compared with simulated annealing genetic
algorithm for all aspects of the show.

Keywords: Permutation flow shop scheduling, limited buffers, Total energy
consumption, Makespan

1. Introduction

Our planet has recently encountered a serious issue on fuel
reduction, carbon dioxide emission and global Warming,
because of the vast usage of energy resources. Industrial sector
accounts for 31% of energy consumption and 36% of carbon
dioxide emission (Bruzzone et al. 2012). 34% of energy was
consumed by manufacturing departments in USA in 2006 (Fang
et al. 2011). Saving energy is an important issue and many
researchers have focused on this subject to find strategies to
reduce its consumption. Some international standards (EN
16001, ISO 50001) have been designed to manage the energy
consumption of industrial plants and other sectors (Bruzzone et
al. 2012). In this article we present a method that aims to select
the optimum sequence work and unemployment as well as the
interval of the machine must be idle or turned off and turned on
again to continue operation (launch), So that the total cost of the
overhead costs of equipment and systems that minimize their
energy costs.

2. Literature review

A great amount of energy is being used in industry and it’s very
important to utilize proper policies that can reduce the energy
consumption in this sector. Because of the importance of the
energy consumption, many researchers have been attracted to
this area and some investigations have been done recently. There
are various strategies to prevent the waste of energy in industry
that have been studied so far. One of the strategies is to turn the
machines on and off while they are not processing any job.
Mouzon and Yildirim (2008), introduced a multi-objective
mathematical model for the mentioned strategy on a single
machine, they tried to optimize the total tardiness and total
energy consumption of the system by deciding the start time and
the length of turn off/turn on periods while the machine is idle.
They considered release date of jobs in the model and proved
their problem is in the set of NP-hard problems so they utilized a
randomized multi-objective adaptive search meta-heuristic to
solve the problem. Liu et al. (2013), studied a similar problem
for job shop environment. They assumed that each machine has
three levels of power consumption: idle power, switched into
run-time power and the process power. They proposed a bi-
objective mathematical model. The objective included total
electricity consumption and total weighted tardiness. A non-
dominant Sorting Genetic Algorithm was employed as the
solving method to obtain a proper pareto-front for the problem.
Dai et al. (2013), investigated the flexible flowshop problem by
considering the energy consumption. A multi-objective

mathematical model and an improved genetic-simulated
annealing algorithm were presented in their paper to obtain a
trade-off between makespan and total energy consumption. In
many industrialized countries the time of day has a significant
influence on the price of the power consumption. Time of the
day is usually divided in to three parts: peak load, mid-peak load,
off-peak load. The peak time will lead to the most power cost so
the goal is to schedule the jobs in off-peak time as the first
priority and mid- peak time as the second and scape scheduling
in peak time. Moon et al. (2013), studied the unrelated parallel
machine scheduling problem in a 24 hour of a day divided to
peak, mid-peak and off-peak to minimize the weighted sum of
makespan and time dependent electricity cost. They suggested a
hybrid genetic algorithm to solve the problem. Hybrid flowshop
scheduling problem considering time dependent electricity cost
is studied by Luo et al. (2013), they presented a new ant colony
optimization meta-heuristic to solve the problem. Problem of
scheduling a single machine considering variable energy prices
during a day was investigated by Shrouf et al. (2014). They
proposed a mathematical model and solved the problem by
genetic algorithm. In industry one of the most effective factors
that influence the energy cost of workshops, is their peak power
consumption. Peak power is the maximum amount of the power
is being used during a specific time period, if a workshop can
reduce its peak power it can save a great amount of energy cost,
the best solution to do so is to omit the overlap of the processing
jobs at any time of the planning horizon but in other hand in will
led to the maximization of time-based objectives such as
makespan, so the goal is to find a trade-off between these
objectives. Bruzzone et al. (2012), studied the flexible flowshop
problem by limiting the peak power of the system and proposed
a Mixed Integer Programming (MIP) model to minimize the sum
of makespan and total tardiness. They provided a randomized
neighborhood Search to solve the problem. Fang et al. (2013),
studied the flowshop scheduling problem with peak power
constraint and investigated both mathematical programming and
combinatorial approaches to this problem. There is another way
to decline power consumption of a workshop, in this strategy the
manufacturer have to decide which job have to be done with
which speed on each machine to reduce energy factors such as
peak power or total power consumption. The flowshop
scheduling problem with the objective function of makespan,
peak total power and carbon footprint has been studied by Fang
et al. (2011), in this problem they assumed each machine has
multiple speeds, and the suitable speed has to be chosen for each
one of jobs in the sequence. A multi-objective mathematical
programming model has been presented for the problem.
Strusevich, (1995) studied two-machine flowshop problem with
no-wait while the machine speeds are controllable. He described
an algorithm to solve the problem. Fang and Lin (2013),
investigated the parallel machine scheduling problem to
minimize total weighted tardiness and power cost. They
presented a mathematical model for the problem. The purpose of
the problem was to assign the products to parallel machines
meanwhile the most suitable processing speed has to be selected
for each job on each machine it is assigned to. They proposed
two heuristics to solve the problem and used particle swarm
optimization (PSO) to compare the solutions. Sharma et al.
(2015), examined the so-called econological speed-scaling
scheduling problem for multi-part multi-machine setup operating
under TOU tariffs. The aim is to minimize the electricity cost
and environmental impact for a target production quota by using
a multi-criterion meta-heuristic optimization. Mikhaylidi et al.
(2015), studied a manufacturing operations scheduling problem
under TOU tariffs with a rechargeable battery. They proposed a
dynamic programming algorithm to decide the time to process
each operation such that the total electricity consumption and
operations postponement penalty costs are minimized.

- 137 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

3. Problem description

The permutation flow shop scheduling with limited buffers
considered in this paper can be described as follows. There are n
jobs ܬ = {1, 2, … , ݊} and m machines ܯ = {1, 2, … , ݉}. Each of
the n jobs is to be sequentially processed on through machine 1~݉. At any time, no job can be processed on more than one
machine, while no machine can process more than one job
simultaneously. The processing time of job j on machine i is
given as ݐ. Between each successive pairs of machines i and i
−1 there exist a buffer with the size ܾ (i.e., at most ܾ jobs can be
held simultaneously), and jobs obey the FIFO (first in first out)
rule in each buffer. Besides, the permutation of all jobs to be
processed on each machine is the same. Drake et al. (2006)
realised that in manufacturing environment, large quantities of
energy are consumed by non-bottleneck machines as they lie
idle, and that whenever a machine or is turn on or turn off, there
are significant amounts of start-up or shut-down energy
consumption. As a result, we have to decide at the time that the
machine remains idle, turn it off and restart it to continue
operations or put the machine in stand by mode. For this
purpose, Mouzon and Yildirim (2008) proposed formula (1) in
single machine environment. ܾݐ = ݔܽ݉ ቄா௬ೞೠ௪ , ௦ܶ௧௨ቅ (1)

In the above formula tb is defined as the least amount of duration
required for a turn off/turn on operation (i.e. time required for a
setup) and the amount of time for which a turn off/turn on
operation is logical instead of running the machine at ݕ݃ݎ݁݊ܧ .ݕܾ ݀݊ܽݐݏ௦௧௨, ܲݎ݁ݓௗ and ௦ܶ௧௨ are the energy
needed to setting up the machine, the power of idle working and
the time needed to set up the machine respectively. In this paper,
because we work on flow shop, we calculate ܾݐ for each
machine, so the formula (1) is changed to (2):

ܾݐ (2) = ݔܽ݉ ቄ௦ , ቅݏݐ

In the above formula ݁ݏ, ݅ and ݏݐ are set up energy, idle
power and set up time length for the machine i respectively. In
the above formula ܾݐ is defined as follows:

If idle time of machine i is larger than ܾݐ, then ݊ ݊ݎݑݐ/݂݂ ݊ݎݑݐ option is selected and if it is less than or equal to ܾݐ,
then ݕܾ ݀݊ܽݐݏ option is selected.

Fig.1 ࢈࢚ = ࢞ࢇ ቄ࢙ࢋ , ቅ࢙࢚ = ࢙ࢋ

In the above graph the ݕܾ ݀݊ܽݐݏ line is the time that the job
stays on machine and the machine is ݕܾ ݀݊ܽݐݏ mode, i.e. the
state that the machine does not turns off so that there is no need
to energy while starting. So in this state it uses fixed energy so
that it has a linear diagram with time. The ݊ ݊ݎݑݐ/݂݂ ݊ݎݑݐ
line is about the time that the job stays on machine and we turn it
off and we start it again for the operation. So fixed energy is
needed for setting up. It is apparent in figure 1 that when the
time length of the idle is less than ܾݐ, we should machine i ݕܾ ݀݊ܽݐݏ and when the time length of the idle is more than ܾݐ
the machine i should be turned off and start it again for the
operation.

The objective function of the problem that we are considering is
composed of two parts, the first part is about overhead costs of
machines and the second part is about consumed electric costs.
Obtaining departure time of the last processed job on the last
machine and multiplying by the overhead cost of all machines
(c), the overhead cost of the all machinery is calculated. The
second part of objective function is about electric consumption
of machinery. It is assumed that electric consumption of
machines is consist of job processing energy (the energy that is
consumed for operation on the job) and stand by energy (the
energy the machine uses while stand by work) and set up energy
(the energy that is used for setting the machine up). For
obtaining the set up energy of machine i for a special operation
we use formula (3). In this formula ݁ݏ and ܶ ݂ are setup
energy of a machine i and a binary variable which if the turn
off/turn on operation on machine i between positions of o and
o+1 was done that variable would be 1 and otherwise it would be
zero respectively.

For obtaining stand by energy of machine i for a special
operation we use formula (4) which in it is refereed in Halliday
et al. (2010). In this formula ݅ and ܵܦܥ show the idle power
of machine i and the the time length of idle between positions of
o and o+1 for machine i which in this time length machine i is
ready to start (stand by).

By adding the values of equation (3) and (4) and multiplying that
value with total electricity costs (݁ܿ), we can get the energy cost
of the system and then we will get the total system cost by
adding the energy costs with overhead costs. Note that the total
processing energy (∑ ∑ ܲݐୀଵୀଵ) is not included in the
optimization problem, since it is a fixed constant regardless of
the sequence. In this formula ܲ and ݐ are processing power of
machine i and processing time of job j on machine i respectively.

Assumptions contained in the question under consideration
include:

 Preemption in jobs is not allowed.
 An operation cannot be performed by more than one

machine at the same time.
 Each machine can process at most one job at a time.
 Jobs are independent of each other.
 All parameters are certain.
 Buffer space is limited.
 Two types of energy that are intended for the machine,

including total setup energy and total stand by energy.
 All jobs have equal priorities.
 Machines are so flexible, so that we can turn them off and

on any time we need.

- 138 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

4. Solution method

The studied problem is strongly NP-hard. Therefore, two meta-
heuristic algorithms: a genetic algorithm (GA) and a simulated
annealing (SA) algorithm are proposed to solve the problem.

4.1 Genetic algorithm

The genetic algorithm was introduced in 1970 by Holland. It’s
an efficient stochastic search method that has been used by many
researchers in various fields such as scheduling problems. This
algorithm is a kind of evolutionary algorithms and is inspired by
natural behavior of human body. In the first step it starts by an
initial population (a set of solutions), which are coded as a
sequence of numbers, called chromosome. New chromosomes
(offsprings) are created by applying crossover and mutation
operations to the parents. Crossover operator creates new
offsprings by exchanging some parts of the selected parents, and
the mutation operator tries to make slight changes in the parents
by swapping its elements or other known methods. The
algorithm uses a fitness function to evaluate the quality of
existing solutions to select the elitist ones and create the next
generation by probabilistic methods. The outline of the proposed
genetic algorithm is given in Fig. 3.

Fig. 3 Encoding, Initial solution and fitness function of GA

4.1.1 Encoding

Showing the chromosome response, the order of jobs is obtained.
So the refereed chromosome is defined so that the first number
of chromosome from the left shows the number of first job of
order and the second number of chromosome from the left shows
the number of the second job of the order and so on. So the
length of the chromosome is ݊. For clarification an example is
given in Table 1. In that example it is assumed that four jobs are
there for processing. The numbers 2,3,4 and 1 shows the first,
the second, the third and the last job of the order.

Table 1: Chromosome representation

2 3 4 1

4.1.2 Initial population

Two initial populations are used in the algorithm, and the other
populations are generated randomly. Two methods are used to
generate different sequences of jobs. In the first method, we use

the well-known NEH1 method to generate the sequence of jobs,
the second method is a SPT2-based heuristic.

4.1.3 Crossover

Crossover is a significant operator to create the next generation.
Two parents have to be selected among the existing solutions to
create crossover offsprings. The algorithm tries to select the best
solutions as parents to obtain decent offsprings with suitable
fitness values. There are two common ways to select parents:
Roulette wheel, Tournament. In the proposed algorithm, Roulette
wheel is used as the selection operator. Parents are selected
according to their fitness. Better solutions have more chances to
be selected. After the parents are selected, one point crossover is
used to generate new offsprings. After the crossover is
implemented, some offsprings may need to be reformed to
become a feasible solution. It occurs because of the identicality
of some job numbers in the chromosome. Reformers remove the
job number replications and replace the missing job numbers in
the blank places. For more illustration of the crossover operation
see Figure 4. Suppose we have nine jobs and the break-point is 6.
As it is shown in offspring 1, job number 6 is repeated two
times. The same situation is happened in offspring 2 for job 3,
therefore, a reformation is done in the next step to correct the
chromosomes.

1 Nawaz, Enscore, Ham
2 Shortest Processing Time

- 139 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Fig. 4 An example of crossover operation for nine jobs

4.1.4 Mutation

After crossover, the strings are subjected to mutation. Mutation
is a genetic operator used to maintain genetic diversity from one
generation of a population of genetic algorithm chromosomes to
the next. It is analogous to biological mutation. Mutation alters
one or more gene values in a chromosome from its initial state.
In mutation, the solution may change entirely from the previous
solution. Hence GA can come to better solution by using
mutation. Mutation occurs during evolution according to a user-
definable mutation probability. This probability should be set
low. If it is set too high, the search will turn into a primitive
random search. The purpose of mutation in GAs is preserving
and introducing diversity. Mutation should allow the algorithm
to avoid local minima by preventing the population of
chromosomes from becoming too similar to each other, thus
slowing or even stopping evolution. This reasoning also explains
the fact that most GA systems avoid only taking the fittest of the
population in generating the next but rather a random (or semi-
random) selection with a weighting toward those that are fitter.
Referring to Abdoun et al. (2012), five modes of mutation are
used in the proposed algorithm to keep diversity of
chromosomes in all iterations.

4.1.4.1 Twors Mutation

Twors mutation allows the exchange of position of two genes
randomly chosen.

Fig. 5 Mutation operator TWORS

4.1.4.2 Centre inverse mutation (CIM)

The chromosome is divided into two sections. All genes in each
section are copied and then inversely placed in the same section
of a child.

Fig. 6 Mutation operator CIM

4.1.4.3 Reverse Sequence Mutation (RSM)

In the reverse sequence mutation operator, we take a sequence S
limited by two positions i and j randomly chosen, such that i<j.
The gene order in this sequence will be reversed by the same

way as what has been covered in the previous operation. The
algorithm (Figure 7) shows the implementation of this mutation
operator.

Fig. 7 Mutation operator RSM

- 140 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

4.1.4.4 Throas Mutation

We construct a sequence of three genes: the first is selected
randomly and the two others are those two successors. Then, the
last becomes the first of the sequence, the second becomes last
and the first becomes the second in the sequence.

4.1.4.5 Thrors Mutation

Three genes are chosen randomly which shall take the different
positions not necessarily successive i < j < l. the gene of the
position i becomes in the position j and the one who was at this
position will take the position l and the gene that has held this
position takes the position i .

Fig. 8 GA Operators

4.1.5 Fitness Function

After performance of mutation and crossover operators, the
problem has three population which is consist of offsprings,
main population and mutants. So the chromosome of these three
population according to the quality of their answers and
depending on the objective function of the problem are joined
together and compose the composed population. In other words
the corresponding amount of each chromosome is in the
objective function of the problem and the chromosomes with the
best answer is chosen. in this paper the amount of the objective
function is consist of energy costs and the costs related to
makespan which is put according to the amount of buffers
obtained among machines and put as fitness of each
chromosome. As the size of the buffer gets bigger, the amount of
objective function decreases. The reason is that bigger size of the
buffer can decrease the number of blocks (blocking product
line). So the number of the times that the machine goes stand by
and also the number of the times that the machine shuts down
and starts again for the operation (setup) decreases and so less
energy is used. And also growing the size of buffer makespan
decreases, so the total amount of objective function decreases
and the fitness increases.

4.2 Simulated annealing

Kirkpatrick et al. (1983), were the first researchers who
introduced simulated annealing. Simulated annealing (SA) is a
stochastic iterative search algorithm which was successfully
implemented by many researchers to solve different optimization
problems. The first step of this algorithm deals with the creation
of initial solution, then a specific number of neighbors is created
for initial solution. In the next step, the neighbors of each
solution are compared to each other and the best neighbor is
selected. The difference between the objective (fitness) values of
a solution (ܵ) and its neighbor (ܵᇱ) is calculated as follows: (ܵᇱ) − .ܵ denotes the fitness value of solution (ܵ)ܥ where , (ܵ)ܥ
In the problems with minimization objective functions, if < 0 ,
the base solution (ܵ) is omitted and the best neighbor is replaced
with it. Because we have obtained a solution with better
objective value, but if ܧ ≥ 0, then the acceptance of the new
(neighbor) solution depends on an exponential probability
function called Boltzmann. It helps SA not to be trapped in local
optimums, and its formula is as follows: ݎ = exp (−ܧൗܶ),
where T is the Temperature of the algorithm which is reduced by
the means of a cooling function in each iteration. This process is
repeated for all solutions in all iterations until the stopping
criterion is met. The outline of the algorithm is shown in Fig. 9.

Fig. 9 Encoding, Initial solution and fitness function of SA

Encoding form, initial solutions and fitness function of SA are
the same as GA and the same methods used in mutation of GA
are used to create new neighbors of each solution in SA.

4.3. Parameters of GA and SA

Meta-heuristic algorithms are too sensitive to the value of their
parameters and it is important to select a suitable parameter set
for each algorithm. In this paper we selected the most effective
parameters which seem to have efficient influences on the
solutions. GA and SA algorithms are implemented to solve the
problem with different solve the problem with different
parameters and finally the most proper parameter is selected
among the others Parameters of GA have set as follows.

 , is the crossover percentage. Suppose the population size
(popsize) is set to be 100, in each iteration we have to
create 100 other offsprings, merge them with the old ones
and select the best 100 chromosomes. There are two
operators to create new offsprings, namely crossover and
mutation. is the proportion of the new offsprings made
by crossover operator compared to the number of
offsprings made by mutation. For example if = 0.7 , we
will have 70 of the new offsprings made by crossover
operator.

 , is the mutation percentage. In the implemented GA, = 1 − , . Hence following the above example = 1 − 0.7 and the number of new offsprings made by
mutation operator will be equal to 30.

 Stop criterion is defined in section 5.

Parameters of SA have set as follows.

- 141 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

 Number of neighbors, is the number of new neighbors
created for each solution.

 ܶ, is the initial temperature. We have used the formula ܶ = ܧ− ln(ܲ)ൗ , to obtain the value of ܶ, where E is the

difference between the objective values of a solution and
its best neighbor, ܲ is the acceptance probability of
Boltzmann function in the 1௦௧ iteration. The obtained value
of ܶ in small size problems is 5.12 and for large scale
problems we have used the value 6.64.

 0) ߙ < ߙ < 1) , is the cooling ratio. It is applied to reduce
the temperature as the algorithm goes on.

 Stop criterion, is defined in section 5 (same as GA).

5. Computational experiments

Because of the lack of benchmarks for the studied problem, we
have generated some sample instances to investigate the
efficiency effectiveness of the proposed algorithms. Three types
of instances have been generated, namely small size (ARFS),
medium size (ARFM) and large size (ARFL) problems. 40 small
size, 60 medium size and 48 large scale problems have been
generated. Each problem instance is defined by 3 parameters
which describe the size of the problem, these parameters are the
number jobs (n), the number of machines (m), the number of
buffers (b). For small size problems, number of jobs, machines
and buffers are as follows respectively: {4, 6}, {2, 3, 5, 7}, {0,1,2,4, ∞}, for medium size instances, the numbers are {8, 10,
15}, {2, 3, 5, 7}, {0,1,2,4, ∞} and for large scale problems, the
numbers are: {20, 30, 40, 50}, {10, 12, 15}, {0,2,4, ∞}.
The minimum processing time of jobs, i.e. the time with full
power of machines are generated randomly by the uniform
distribution [1,100]. Set up energy of machine of each machine

is generated by the uniform distribution of ቂଵଵଵ , ହଵቃ. Idle power of

each machine is generated by the uniform distribution of ቂ ଶଵ , ହଵቃ.

Set up time of each machine is generated by the uniform
distribution of ሾ1,20ሿ. Total overhead costs is generated by the

uniform distribution of ቂ ହ , ହቃ × ݉, that ݉ is number of

machines. Total electricity costs is generated by the uniform

distribution of ቂ ସ , ଷቃ.

We have used five different values of 0.1, 0.3, 0.5, 0.7 and 0.9
for crossover percentage () in GA, and therefore the values of will be equal to 0.9, 0.7, 0.5, 0.3 and 0.1 respectively.

As mentioned in section 4, we have used the formula: ܶ ܧ−= ln(ܲ)ൗ to calculate the values of ܶ, and two different values

have been obtained for small and large size problems. The values

20, 30 and 0.97, 0.985, 0.99 are selected for parameters ݊݊, ,ߙ
respectively. So we have six combinations of the values of these
two parameters for SA.

For small size problems, we can obtain the optimal solutions by
using Lingo software. But because of the complexity of the
problem, Lingo is unable to obtain the optimal solutions in time
limit of 300 minutes for some medium and all large size
problems.

The results of the numerical experiments are given in Tables 2 to
8. The bolded values in column four of Tables 1 to 4 are the
optimal solutions obtained by Lingo.

We have used equation (5) to calculate Dev value for the
obtained solutions.

In which ܱܾ݆(ܣܩ, shows the the answer of GA or SA (ܣܵ
algorithms and ݐݏ݁ܤ ܱܾ݆ shows the best answer obtained by the
lingo software and SA and GA algorithms.

 According to Tables 2 & 3, genetic algorithm with crossover
percentage of 0.1 has the best performance and the lowest Dev
value for small size problems in comparison with the other
parameter settings. Tables 4 and 5 show the same results for
medium size problems.

Figure 10 shows the objective values obtained by Lingo and GA
with crossover percentage of 0.1 for small and medium size
problems. It shows that the performance of GA is better than
Lingo to obtain optimal or near optimum solutions.

In the large size problems for obtaining the amount of Dev we
use (6) formula. In this formula, ܱܾ݆(ܣܩ, shows the answer (ܣܵ
of GA or SA algorithms and ݐݏ݁ܤ ܱܾ݆ shows the best answer
obtained by SA and GA algorithms.

Tables 6, 7, 8 show the objective and Dev values for large size
problems.

Fig. 10 Comparison between the objectives of Lingo and GA

0

1000

2000

3000

4000

5000

6000

7000

8000

A
R

F
S

1
A

R
F

S
5

A
R

F
S

9
A

R
F

S
13

A
R

F
S

17
A

R
F

S
21

A
R

F
S

25
A

R
F

S
29

A
R

F
S

33
A

R
F

S
37

A
R

F
M

1
A

R
F

M
5

A
R

F
M

9
A

R
F

M
13

A
R

F
M

17
A

R
F

M
21

A
R

F
M

25
A

R
F

M
29

A
R

F
M

33
A

R
F

M
37

A
R

F
M

41
A

R
F

M
45

A
R

F
M

49
A

R
F

M
53

A
R

F
M

57

Lingo

GA

- 142 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

To have a fair comparison between two algorithms, a time-based
stop criterion of 0.2 × ݊ × ݉ × (ܾ + 1) seconds is used for both
algorithms. Table 6 shows the best, worst and mean objective
values obtained by GA for each values of after five runs for each
instance, and Table 7 shows the results obtained by SA. Bolded
values in these tables are the best objective values those have

been reached by the use of all 11 different parameter setting of
both GA and SA algorithms. Table 7 shows the Dev value of all
different cases of GA and SA and the mean deviations show that
GA with the of 0.1 has the best performance for large scale
problems in comparison with the others.

Table 3 Objective and Dev values of Lingo and GA for small size problems

Instance
Name

n m b Lingo Makespan 0.1 = 0.3 = = 0.9

Mean Dev Mean Dev Mean Dev

ARFS1 4 2 0 432.1326 317 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000
ARFS2 4 2 1 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS3 4 2 2 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS4 4 2 4 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS5 4 2 ∞ 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS6 4 3 0 310.9288 286 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000

ARFS7 4 3 1 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000

ARFS8 4 3 2 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000

ARFS9 4 3 4 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000

ARFS10 4 3 ∞ 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000

ARFS11 4 5 0 1671.6182 468 1671.6182 0.00000 1671.6182 0.00000 1671.6182 0.00000

ARFS12 4 5 1 1587.6182 425 1587.6182 0.00000 1587.6182 0.00000 1587.6182 0.00000

ARFS13 4 5 2 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

ARFS14 4 5 4 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

ARFS15 4 5 ∞ 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

ARFS16 4 7 0 2676.8394 556 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000

ARFS17 4 7 1 2673.4894
2673 3094

552 2673.4894
2673 3094

0.00000 2673.4894
2673 3094

0.00000 2673.4894
2673 3094

0.00000

ARFS18 4 7 2 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS19 4 7 4 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS20 4 7 ∞ 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS21 6 2 0 95.0842 351 95.0842 0.00000 95.0842 0.00000 95.1397 0.05800

ARFS22 6 2 1 89.5112 334 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000

ARFS23 6 2 2 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS24 6 2 4 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS25 6 2 ∞ 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS26 6 3 0 132.8124 528 132.8124 0.00000 132.8124 0.00000 133.7791 0.72700

ARFS27 6 3 1 123.4331 453 123.4331 0.00000 123.4331 0.00000 123.833 0.32300

ARFS28 6 3 2 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.3664 0.10800

ARFS29 6 3 4 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000

ARFS30 6 3 ∞ 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000

ARFS31 6 5 0 2131.2345 625 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000

ARFS32 6 5 1 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS33 6 5 2 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS34 6 5 4 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS35 6 5 ∞ 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS36 6 7 0 2930.88 862 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000

ARFS37 6 7 1 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

ARFS38 6 7 2 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

ARFS39 6 7 4 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

ARFS40 6 7 ∞ 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

Mean

0.00000

0.00000

0.03040

Table 4 Objective and Dev values of Lingo and SA for small size problems

Instance
Name

n m b Lingo Makespan

 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Mean Dev

ARFS1 4 2 0 432.1326 317 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000 432.1326 0.00000
ARFS2 4 2 1 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS3 4 2 2 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS4 4 2 4 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS5 4 2 ∞ 430.5105 315 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000 430.5105 0.00000

ARFS6 4 3 0 310.9288 286 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000 310.9288 0.00000

ARFS7 4 3 1 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000 267.3215 0.00000

ARFS8 4 3 2 267.3215 279 267.3613 0.01500 267.3412 0.00007 267.3412 0.00700 267.3613 0.01500

ARFS9 4 3 4 267.3215 279 267.3215 0.00000 267.3215 0.00000 267.3517 0.01100 267.3215 0.00000

ARFS10 4 3 ∞ 267.3215 279 267.3215 0.00000 267.3314 0.00400 267.3215 0.00000 267.3215 0.00000

ARFS11 4 5 0 1671.6182 468 1671.6182 0.00000 1681.6182 0.60000 1671.6182 0.00000 1681.5390 0.60000

ARFS12 4 5 1 1587.6182 425 1587.6182 0.00000 1587.6182 0.00000 1588.6512 0.06500 1587.6182 0.00000

ARFS13 4 5 2 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

ARFS14 4 5 4 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

ARFS15 4 5 ∞ 1586.7947 423 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000 1586.7947 0.00000

- 143 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

ARFS16 4 7 0 2676.8394 556 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000 2676.8394 0.00000

ARFS17 4 7 1 2673.4894
2673 3094

552 2673.4894
2673 3094

0.00000 2673.4894
2673 3094

0.00000 2673.4894
2673 3094

0.00000 2673.4894
2673 3094

0.00000

ARFS18 4 7 2 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS19 4 7 4 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS20 4 7 ∞ 2673.3094 552 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000 2673.3094 0.00000

ARFS21 6 2 0 95.0842 351 95.0842 0.00000 95.0842 0.00000 95.0842 0.00000 95.0842 0.00000

ARFS22 6 2 1 89.5112 334 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000 89.5112 0.00000

ARFS23 6 2 2 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS24 6 2 4 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS25 6 2 ∞ 89.0778 334 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000 89.0778 0.00000

ARFS26 6 3 0 132.8124 528 132.8124 0.00000 132.8124 0.00000 132.8124 0.00000 132.8124 0.00000

ARFS27 6 3 1 123.4331 453 123.4331 0.00000 123.4331 0.00000 123.4331 0.00000 123.4331 0.00000

ARFS28 6 3 2 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000

ARFS29 6 3 4 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000

ARFS30 6 3 ∞ 123.2332 453 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000 123.2332 0.00000

ARFS31 6 5 0 2131.2345 625 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000 2131.2345 0.00000

ARFS32 6 5 1 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS33 6 5 2 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS34 6 5 4 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS35 6 5 ∞ 2043.534 604 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000 2043.534 0.00000

ARFS36 6 7 0 2930.88 862 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000 2930.88 0.00000

ARFS37 6 7 1 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

ARFS38 6 7 2 2787.29 828 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000 2787.29 0.00000

ARFS39 6 7 4 2787.29 828 2798.22 0.39200 2797.15 0.35400 2788.39 0.00039 2796.36 0.32500

ARFS40 6 7 ∞ 2787.29 828 2797.18 0.35500 2787.29 0.00000 2797.14 0.00353 2787.29 0.00000

Mean 0.01900 0.02400 0.01200 0.02300

Table 5 Objective and Dev values of Lingo and GA for medium size problems

Instance
Name

n m b Lingo Makespan 0.1 = 0.3 = = 0.9

Mean Dev Mean Dev Mean Dev

ARFM1 8 2 0 507.3121 546 507.3121 0.00000 507.3121 0.00000 507.3121 0.00000

ARFM2 8 2 1 498.9009 434 498.9009 0.00050 499.1509 0.05011 499.7409 0.16837

ARFM3 8 2 2 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000

ARFM4 8 2 4 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000

ARFM5 8 2 ∞ 498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000

ARFM6 8 3 0 630.81 642 630.81 0.00000 630.81 0.00000 630.81 0.00000

ARFM7 8 3 1 552.15 663 552.15 0.00000 552.15 0.00000 552.53 0.06882

ARFM8 8 3 2 549.69 629 549.69 0.00000 549.75 0.01092 549.84 0.02729

ARFM9 8 3 4 549.69 629 549.69 0.00050 549.69 0.00000 549.69 0.00000

ARFM10 8 3 ∞ 549.69 629 549.69 0.00000 549.69 0.00000 549.69 0.00000

ARFM11 8 5 0 1598.5583 910 1598.5583 0.00000 1598.5583 0.00000 1601.349 0.17458

ARFM12 8 5 1 1557.0355 733 1557.0355 0.00000 1562.0662 0.32309 1557.0355 0.00000

ARFM13 8 5 2 1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.3954 0.02311

ARFM14 8 5 4 1557.0355 733 1557.0355 0.00000 1557.097 0.00000 1557.3731 0.02168

ARFM15 8 5 ∞ 1552.0662 700 1552.0662 0.00000 1552.0755 0.00000 1552.0762 0.00064

ARFM16 8 7 0 3177.487 940 3177.487
0.01197

3177.3083 0.00000 3177.43 0.01018

ARFM17 8 7 1 2974.37 985 2974.37 0.00000 2975 0.02118 2975 0.02118

ARFM18 8 7 2 2971.15 923 2971.15 0.00050 2971.4417 0.01397 2971.4417 0.01397

ARFM19 8 7 4 2971.15 923 2971.15 0.00000 2971.4417 0.00000 2971.505 0.01195

ARFM20 8 7 ∞ 2971.15 923 2971.15 0.00000 2971.4417 0.01128 2971.6283 0.01756

ARFM21 10 2 0 727.7255 729 727.6255
0.08437

727.0121 0.00000 727.5266 0.07077

ARFM22 10 2 1 718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00392

ARFM23 10 2 2 718.5122 681 718.5122 0.00050 718.5122 0.00000 718.5122 0.00000

ARFM24 10 2 4 718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000

ARFM25 10 2 ∞ 718.5122 681 718.5122 0.00000 718.5112 0.00000 718.5122 0.00014

ARFM26 10 3 0 1315.0115 829 1315.0115 0.00000 1319.3836 0.33248 1315.8957 0.06724

ARFM27 10 3 1 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1223.494 0.07889

ARFM28 10 3 2 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.9884 0.03753

ARFM29 10 3 4 1222.5296 789
1222.5296

0.00000 1222.5296 0.00000 1222.8329 0.02481

ARFM30 10 3 ∞ 1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.8329 0.02481

- 144 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Table 6 Objective and Dev values of Lingo and GA for medium size problems

Instance
Name

n m b Lingo Makespan 0.1 = 0.3 = = 0.9

Mean Dev Mean Dev Mean Dev

ARFM31 10 5 0 3352.0593 1063 3352.0593 0.05096 3351.9173 0.04672 3352.6818 0.06954

ARFM32 10 5 1 3305.1966 1036 3305.1966 0.04833 3303.6001 0.00000 3308.4358 0.14638

ARFM33 10 5 2 3283.7372 1010 3283.7372 0.03673 3283.7372 0.03673 3283.7372 0.03673

ARFM34 10 5 4 3283.7372 1010 3283.7372 0.00000 3283.7372 0.00000 3283.7372 0.00000

ARFM35 10 5 ∞ 3274.9061 990 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000

ARFM36 10 7 0 5318.0434 1124 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00668

ARFM37 10 7 1 5139.9375 1028 5139.9375 0.04449 5139.688 0.03963 5138.0363 0.00748

ARFM38 10 7 2 5128.0152 1012 5128.0152 0.05224 5126.5662 0.02397 5127.6585 0.04528

ARFM39 10 7 4 5123.2875 1020 5123.2875 0.03382 5123.66 0.04110 5122.1375 0.01137

ARFM40 10 7 ∞ 5119.0775 1038 5119.0775 0.01240 5119.7675 0.02588 5119.2463 0.01570

ARFM41 15 2 0 910.402 853 910.402 0.04236 910.0165 0.00000 910.0815 0.00714

ARFM42 15 2 1 898.723 761 898.5886 0.27978 897.0869 0.11220 896.0815 0.00000

ARFM43 15 2 2 898.723 761 898.5886 0.26708 896.912 0.08000 896.7802 0.06530

ARFM44 15 2 4 898.723 761 896.561 0.10287 895.71 0.00000 896.5114 0.09733

ARFM45 15 2 ∞ 898.723 761 896.561 0.16009 895.71 0.06502 896.5114 0.15455

ARFM46 15 3 0 1801.24 1125 1801.24 0.09150 1799.5933 0.00000 1804.5466 0.27525

ARFM47 15 3 1 1786.9466 1022 1782.9466 0.03553 1782.3133 0.00000 1782.3866 0.00411

ARFM48 15 3 2 1784.4 973 1782.2 0.16890 1781.3866 0.12318 1781.7266 0.14229

ARFM49 15 3 4 1781.27 1119 1781.2 0.11118 1781.3266 0.11829 1781.83 0.14659

ARFM50 15 3 ∞ 1781.27 1119 1781.2 0.17017 1781.3266 0.17729 1781.5033 0.18723

ARFM51 15 5 0 1945.5209 1287 1945.5209 0.08128 1944.6771 0.03787 1945.1943 0.06448

ARFM52 15 5 1 1842.97 1062 1835.8887 0.00000 1837.7205 0.09978 1840.6977 0.26194

ARFM53 15 5 2 1756.62 1052 1733.1944 0.00000 1733.7795 0.03376 1735.7731 0.14878

ARFM54 15 5 4 1737.433 1063 1733.1028 0.03390 1732.5154 0.00000 1736.2767 0.21710

ARFM55 15 5 ∞ 1734.45 960 1732.4865 0.09958 1732.0066 0.07185 1733.5913 0.16341

ARFM56 15 7 0 7113.25 1567 7106.1205 0.00000 7109.8561 0.06221 7107.017 0.02225

ARFM57 15 7 1 6463.77 1380 6438.2879 0.07591 6433.4041 0.00000 6439.655 0.09716

ARFM58 15 7 2 6451.37 1508 6409.8226 0.09076 6408.5056 0.07020 6408.8179 0.07507

ARFM59 15 7 4 6443.723 1480 6356.9092 0.06981 6355.0682 0.04083 6356.6365 0.06552

ARFM60 15 7 ∞ 6372.13 1288 6340.0028 0.00000 6343.7085 0.05845 6341.8284 0.02879

Mean

0.03563 0.03746

0.05718

Table 7 Objective and Dev values of Lingo and SA for medium size problems

Instance
Name

n m b Lingo Makespan
 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Dev Mean Dev

ARFM1 8 2 0
507.3121 546 507.3121 0.00000 507.3121 0.00000 507.3121 0.00000 0.00000 507.3121 0.00000

ARFM2 8 2 1
498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000

ARFM3 8 2 2
498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000

ARFM4 8 2 4

498.9009 434 498.9009 0.00000 498.9009 0.00000 498.9009 0.00000 0.00000 498.9009 0.00000

ARFM5 8 2 ∞

498.9009 434 498.9100 0.00000 498.9009 0.00000 498.9009 0.00000 0.04398 498.9009 0.00000

ARFM6 8 3 0
630.81 642 630.81 0.00000 630.81 0.00000 630.81 0.00000 0.00000 630.81 0.00000

ARFM7 8 3 1
552.15 663 552.15 0.00000 552.15 0.00000 552.15 0.00000 0.00000 552.15 0.00000

ARFM8 8 3 2
549.69 629 549.69 0.00000 549.73 0.00000 549.81 0.02183 0.00000 549.69 0.00000

- 145 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

ARFM9 8 3 4
549.69 629 549.71 0.00000 549.69 0.00000 549.69 0.00000 0.00000 549.80 0.02001

ARFM10 8 3 ∞
549.69 629 549.69 0.00000 549.69 0.00000 549.69 0.00000 0.00000 549.69 0.00000

ARFM11 8 5 0
1598.5583 910 1598.5583 0.00000 1598.5671 0.00000 1598.5583 0.00000 0.00000 1598.5583 0.00000

ARFM12 8 5 1

1557.0355 733 1557.1241 0.00000 1557.1352 0.00000 1557.0355 0.00000 0.07255 1559.5674 0.16261

ARFM13 8 5 2
1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.0355 0.00000 0.00000 1557.0355 0.00000

ARFM14 8 5 4
1557.0355 733 1557.0355 0.00000 1557.0355 0.00000 1557.0355 0.00000 000000 1557.0355 0.00000

ARFM15 8 5 ∞
1552.0662 700 1552.0662 0.00000 1552.0662 0.00000 1552.0662 0.00000 0.00000 1552.0662 0.00000

ARFM16 8 7 0
3177.487 940 3177.487 0.01197 3177.487 0.01197 3177.487 0.01197 0.01197 3177.487 0.01197

ARFM17 8 7 1
2974.37 985 2974.37 0.00000 2974.37 0.00000 2974.37 0.00000 0.00000 2974.37 0.00000

ARFM18 8 7 2
2971.15 923 2972.1451 0.03764 2971.15 0.00000 2971.15 0.00000 0.00000 2971.1443 0.00000

ARFM19 8 7 4
2971.15 923 2971.15 0.00000 2971.15 0.00000 2971.15 0.00000 0.00000 2971.15 0.00000

ARFM20 8 7 ∞
2971.15 923 2971.1661 0.00000 2971.1743 0.00000 2971.15 0.00000 0.00000 2971.15 0.00000

ARFM21 10 2 0
727.7255 729 727.6343 0.08558 727.4466 0.05977 727.6341 0.08556 0.09813 727.7255 0.09813

ARFM22 10 2 1
718.5122 681 718.5034 0.00000 718.4849 0.00000 718.4840 0.00000 0.00000 718.5122 0.00000

ARFM23 10 2 2
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000

ARFM24 10 2 4
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000

ARFM25 10 2 ∞
718.5122 681 718.5122 0.00000 718.5122 0.00000 718.5122 0.00000 0.00000 718.5122 0.00000

ARFM26 10 3 0
1315.0115 829 1315.0115 0.00000 1315.0115 0.00000 1315.0115 0.00000 0.00000 1315.0115 0.00000

ARFM27 10 3 1

1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.5296 0.00000 0.00000 1222.5296 0.00000

ARFM28 10 3 2
1222.5296 789 1222.5376 0.00000 1222.5296 0.00000 1222.5481 0.00000 0.00000 1222.5296 0.00000

ARFM29 10 3 4

1222.5296 789 1222.5296 0.00000 1222.5296 0.00000 1222.5296 0.00000 0.00000 1222.5296 0.00000

ARFM30 10 3 ∞ 1222.5296 789 1222.5296 0.00000
1222.5296

0.00000

1222.5296

0.00000 0.00000
1222.5296

0.00000

Table 8 Objective and Dev values of Lingo and SA for medium size problems

Instance
Name

n m b Lingo Makespan
 30 = ݊݊ 20 = ݊݊ 30 = ݊݊ 20 = ݊݊ 0.99 = ߙ 0.985 = ߙ 0.97 = ߙ 0.97 = ߙ

Mean Dev Mean Dev Mean Dev Mean Dev

ARFM31 10 5 0 3352.0593 1063 3351.6362 0.00000 3352.0044 0.04932 3352.0418 0.05043 3352.0593 0.05096

ARFM32 10 5 1 3305.1966 1036 3305.1746 0.03833 3305.1966 0.04833 3305.1966 0.04833 3305.1966 0.04833

ARFM33 10 5 2 3283.7372 1010 3283.7372 0.04766 3283.7372 0.03673 3283.7372 0.03673 3283.7372 0.03673

ARFM34 10 5 4 3283.7372 1010 3283.7372 0.03673 3283.7372 0.00000 3283.7372 0.00000 3283.7372 0.00000

ARFM35 10 5 ∞ 3274.9061 990 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000 3274.9061 0.00000

ARFM36 10 7 0 5318.0434 1124 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00000 5318.0434 0.00000

ARFM37 10 7 1 5139.9375 1028 5139.9375 0.00000 5139.9375 0.04449 5139.9375 0.04449 5139.9375 0.04449

ARFM38 10 7 2 5128.0152 1012 5129.1943 0.04449 5129.1774 0.07492 5139.9375 0.28486 5139.9375 0.28486

ARFM39 10 7 4 5123.2875 1020 5124.956 0.07525 5124.01991 0.04812 5123.2875 0.03382 5124.2341 0.05231

- 146 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

ARFM40 10 7 ∞ 5119.0775 1038 5119.0019 0.06640 5119.0118 0.01112 5119.0775 0.01240 5118.4428 0.00000

ARFM41 15 2 0 910.402 853 910.3212 0.01092 910.2115 0.02143 910.402 0.04236 910.402 0.04236

ARFM42 15 2 1 898.723 761 898.666 0.03348 898.594 0.28039 898.723 0.29478 897.2341 0.12863

ARFM43 15 2 2 898.723 761 896.195 0.28842 896.9124 0.08005 898.2150 0.22540 898.723 0.28208

ARFM44 15 2 4 898.723 761 896.012 0.00000 896.8150 0.13122 896.7112 0.11964 897.1943 0.17357

ARFM45 15 2 ∞ 898.723 761 895.1963 0.04157 898.723 0.40162 896.1542 0.11464 895.1280 0.00000

ARFM46 15 3 0 1801.24 1125 1801.24 0.00000 1801.24 0.09150 1800.8141 0.06784 1801.24 0.09150

ARFM47 15 3 1 1786.9466 1022 1783.9370 0.09150 1783.6050 0.07247 1785.3387 0.16975 1784.6243 0.12966

ARFM48 15 3 2 1784.4 973 1780.19 0.09110 1779.6112 0.02339 1779.1950 0.00000 1780.4370 0.06981

ARFM49 15 3 4 1781.27 1119 1779.2219 0.05592 1779.3114 0.00000 1779.2219 0.00000 1781.27 0.11511

ARFM50 15 3 ∞ 1781.27 1119 1779.1871 0.00000 1778.1741 0.00000 1781.27 0.17411 1778.237 0.00000

ARFM51 15 5 0 1945.5209 1287 1944.922 0.05697 1944.1774 0.01217 1944.2050 0.01359 1945.388 0.07444

ARFM52 15 5 1 1842.97 1062 1840.568 0.05047 1840.7544 0.26503 1839.371 0.18968 1839.5367 0.19870

ARFM53 15 5 2 1756.62 1052 1744.9271 0.25488 1740.9066 0.44497 1739.7095 0.37590 1739.637 0.37172

ARFM54 15 5 4 1737.433 1063 1735.906 0.67694 1735.7441 0.18636 1733.7536 0.07147 1735.196 0.15472

ARFM55 15 5 ∞ 1734.45 960 1732.186 0.19570 1731.295 0.03074 1732.687 0.11116 1731.225 0.02669

ARFM56 15 7 0 7113.25 1567 7108.713 0.08222 7108.435 0.04221 7106.5365 0.01549 7105.4357 0.00000

ARFM57 15 7 1 6463.77 1380 6442.763 0.04612 6441.75 0.12973 6435.2766 0.02911 6441.4266 0.12470

ARFM58 15 7 2 6451.37 1508 6421.401 0.14547 6419.7475 0.24574
6417.0431
3313131 0.20351 6419.23 0.23766

ARFM59 15 7 4 6443.723 1480 6368.6273 0.27156 6365.5124 0.20524 6368.476 0.25190 6367.538 0.23713

ARFM60 15 7 ∞ 6372.13 1288 6344.21
0.25428 6341.143 0.01798 6343.14 0.04948 6344.151 0.06543

Mean

 0.05152 0.05111 0.05250 0.05557

The mathematical model is coded and solved by the modeling
language Lingo 9.0. Meta-heuristic algorithms are coded in
Matlab software, version 2013. A personal computer with the
configuration of Core i5 2.5 GHz and 4 GB Ram is applied to
solve the test problems.

In the next part the best answers obtained from lingo software
and two GA and SA algorithms in the 8 to 10 tables are
examined, and the percentage of using stand by and turn off/turn
on in the answers according to the factor of the buffer numbers
in theses tables are presented. As shown in the tables increasing
the amount of buffer factor the number of setting up decreases.
So the number of stand by increases and the number of turn
off/turn on decreases.

Table 9: Percentage of using stand by and turn off/turn on in
small size problems according to the factor of the buffer numbers

Buffer Stand by
turn
off/turn on

0 24% 76%

1 32% 68%

2 44% 56%

4 59% 41%

∞ 86% 14%

Table 10: Percentage of using stand by and turn off/turn on in
medium size problems according to the factor of the buffer
numbers

Buffer Stand by
turn
off/turn on

0 27% 73%

1 35% 65%

2 42% 58%

4 63% 37%

∞ 91% 9%

Table 11: Percentage of using stand by and turn off/turn on in
large size problems according to the factor of the buffer numbers

Buffer Stand by
turn
off/turn on

0 21% 79%

2 52% 48%

4 67% 33%

∞ 97% 3%

5. Conclusion

In this paper we investigated the permutation flow shop
scheduling problem with limited buffers and the objectives of the
minimization of total energy consumption and makespan. We
formulated a mathematical model for the described problem.
Since the proposed problem is NP-hard, so two well-known
meta-heuristics namely; genetic algorithm and simulated
annealing, have been used to produce approximate solutions in a
reasonable time. We generated three different sizes of the
problem, small, medium and large size problems. Lingo was able
to give us the exact solution for all small size problems in time
limit of 300 minutes, but for medium and large scale problems,
Lingo is inefficient, so GA and SA have been used to reach near
optimal solutions. The computational experiments show that
with the used parameter settings of the algorithms for all
problem sizes GA outperforms SA. At the end the best answers
obtained from lingo software and two GA and SA algorithms in
the 8 to 10 tables are examined, and the percentage of using
stand by and turn off/turn on in the answers according to the
factor of the buffer numbers in theses tables are presented. For
future work it's suggested to use some other metaheuristic
methods to solve the problem and compare the solutions with the
existing ones, or maybe suggest a new heuristic for the problem.
In our future research, the proposed algorithm might be extended
to other machine environments such as job shop. Another
extension is considering multi-objective optimization method
such as the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) for the problem.

- 147 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

References

1. Bruzzone, A.A. Anghinolfi, G., Paolucci, D., & Tonelli, F.:
Energy-aware scheduling for improving manufacturing process
sustainability: A mathematical model for flexible flow
shops. CIRP Annals-Manufacturing Technology, 61(1), 2012.
P.459-462.
2. Dai, M., Tang, D., Giret, A., Salido, M.A., & Li, W.D.:
Energy-efficient scheduling for a flexible flow shop using an
improved genetic-simulated annealing algorithm. Robotics and
Computer-Integrated Manufacturing, 29(5), 2013. P. 418-429.
3. Fang, K., Uhan, N.A., Zhao, F., & Sutherland, J.W.: Flow
shop scheduling with peak power consumption
constraints. Annals of Operations Research, 206(1), 2013. P.
115-145.
4. Fang, K.T., & Lin, B.M. Parallel-machine scheduling to
minimize tardiness penalty and power cost. Computers &
Industrial Engineering, 64(1), 2013. P.224-234.
5. Halliday, D., Resnick, R., & Walker, J.: Fundamentals of
physics extended (Vol. 1). John Wiley & Sons. 2010.
6. Kirkpatrick, S., Gelatt, C., & Vecchi, M.: Optimization by
simulated annealing. Science (220/4598), 1993. P. 671–680.
7. Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N.: An
investigation into minimising total energy consumption and total
weighted tardiness in job shops. Journal of Cleaner
Production, 65, 2013. P. 87-96.
8. Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X.: Hybrid
flow shop scheduling considering machine electricity
consumption cost. International Journal of Production
Economics, 146(2), 2013. P. 423-439.
9. Moon, J. Y., Shin, K., & Park, J.: Optimization of
production scheduling with time-dependent and machine-
dependent electricity cost for industrial energy efficiency. The
International Journal of Advanced Manufacturing
Technology, 68(1-4), 2013. P. 523-535.
10. Mouzon, G., & Yildirim, M.B.: A framework to minimise
total energy consumption and total tardiness on a single
machine. International Journal of Sustainable Engineering, 1(2),
2008. P. 105-116.
11. Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., &
Ortega-Mier, M.: Optimizing the production scheduling of a
single machine to minimize total energy consumption
costs. Journal of Cleaner Production, 67, 2014. P.197-207.
12. Strusevich, V.A.: Two machine flow shop scheduling
problem with no wait in process: Controllable machine
speeds. Discrete applied mathematics, 59(1), 1995. P. 75-86.
13. Abdoun, O., Abouchabaka, J., & Tajani, C.: Analyzing the
performance of mutation operators to solve the travelling
salesman problem. arXiv preprint arXiv, 2012. P.1203.3099.
14. Sharma, A., Zhao, F., & Sutherland, J.W.: Econological
scheduling of a manufacturing enterprise operating under a
time-of-use electricity tariff.Journal of Cleaner Production, 108,
2015. P. 256-270.
15. Mikhaylidi, Y., Naseraldin, H., & Yedidsion, L.: Operations
scheduling under electricity time-varying prices. International
Journal of Production Research, 53(23), 2015. P. 7136-7157.
16. Drake, R., Yildirim, M. B., Twomey, J. M., Whitman, L. E.,
Ahmad, J. S., & Lodhia, P.: Data collection framework on
energy consumption in manufacturing. 2006.

Primary Paper Section: A

Secondary Paper Section: DF

- 148 -

