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Abstract: The interest in customer relationship management has been fueled by the 
broad adoption of customer-centric paradigm, rapid growth in data collection, and 
technology advances for more than the past 15 years. It becomes hard to identify and 
interpret meaningful patterns in customer behavior; thus the goal of the paper is to 
compare multiple explanatory variable selection procedures and their effect on a 
customer churn prediction model. Filter and wrapper concepts of variable selection are 
examined, moreover, the runtime of the machine learning pipeline is improved by the 
novel idea of balanced clustering. Classification learners are incorporated with regard 
to simplicity and interpretability (LOGIT, CIT) and complexity and proven 
performance on a given dataset (RF, RBF-SVM). In addition, we show that when 
combined with learner capable of embedded feature selection, explicit variable 
selection scheme does not necessarily lead to performance improvement. On the other 
hand, RBF-SVM learner with no such ability benefits from relevant selection 
procedure in all expected aspects, including classification performance and runtime, 
problem comprehensibility, data storage. 
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1 Introduction 

Customer relationship management (CRM) became a topic of 
interest with a shift to the customer-centric paradigm. It aims to 
create, retain, and strengthen a relationship with customers while 
maintaining profits and revenue. Over the past 15 years, CRM 
has been augmented by progress in data collection and 
technology, enabling to tackle its challenges with a new set of 
tools, i.e., machine learning. An important objective of customer 
relationship management is to minimize customer churn, where 
term customer churn refers to affinity to cease business with the 
company in a given time. Churn reduction is usually motivated 
by a difference between underlying unitary costs of customer 
acquisition and customer retention, even though there are more 
benefits to it (Gronwald, 2017; Gupta et al., 2004; Torkzadeh et 
al., 2006). 

To retain customers, prediction models are required to identify 
early churn signals and flag customers at high risk of leaving. In 
an environment, with rapid growth in data generation and 
collection, it becomes increasingly challenging to detect 
meaningful patterns and extract useful knowledge. Hence the 
aim of the paper is to examine the explanatory variable selection 
procedure and its effect on the performance of the churn 
prediction model. It is generally assumed that the explanatory 
variable selection procedure improves learner prediction 
performance, ability to generalize the problem, 
comprehensibility, reduce computational runtime and reduce 
storage requirements (acc. Aggarwal, 2014; Bagherzadeh-
Khiabani et al., 2016). 

2 Explanatory variable selection 

The merit of explanatory variable selection is to find a subset of 
explanatory variables, which highly discriminates response 
variable. One can distinguish three procedure types – filter, 
wrapper and others (embedded, hybrid) however opinions on the 
matter might differ (Aggarwal, 2014; Bolón-Canedo et al., 2013; 
Bagherzadeh-Khiabani et al., 2016; Duda et al., 2012). We focus 
solely on filter and wrapper selection procedures. The task of 
dimensionality reduction is also tackled with feature extraction 
methods (PCA, LDA, CCA, Isomap, Autoencoder, etc.) since 
they project original features into new feature space while losing 
original comprehensibility (Aggarwal, 2014), they are not 
included. 

Filter selection – FS relies on data properties without utilizing 
any classification learner. The procedure consists of two steps, 
(1) features are ranked according to the chosen criterion, (2) 
highly ranked features are selected. Univariate filters account 

only for a feature-class relationship; however, multivariate filters 
explore feature set-class relationship; hence, the former is 
inferior to the latter in handling redundant features. 

Wrapper selection – As opposed to FS, WS adopts classification 
learner to estimate the quality of the feature set. Considering 
specific classification learner wrapper selection consists of three 
steps, (1) searching subset of features (2) evaluating the selected 
subset of features by the learner (3) repeating (1) and (2) until a 
stopping criterion is met. WS outperforms FS in terms of 
prediction quality of final learner, although the procedure can be 
computationally very expensive. 

Others – In addition to FS and WS procedures, scientific 
literature depicts two more categories of selection methods, (1) 
embedded procedures – feature selection is included in the phase 
of learner fitting (i.e., logistic regression with L1 regularization, 
tree-based methods), which might reduce computational time (2) 
hybrid procedures – usually sequential combination of FS and 
WS method. 

The explanatory variable selection domain broadly intersects 
with fields of machine learning (see Aggarwal, 2014; Arauzo-
Azofra et al., 2008; Bolón-Canedo et al., 2013; Dash, Liu, 2003; 
Duda et al., 2012; Hall, 1999; Kononenko, 1994; Shakil Pervez, 
Farid, 2015), biostatistics and high-throughput biology (see 
Bagherzadeh-Khiabani et al., 2016; Guyon et al., 2002; Gilhan et 
al., 2010; Zhu et al., 2010; Chu et al., 2011). In customer churn 
domain, applications are limited and default to an evaluation of 
only a few feature selection/extraction methods (see Verbeke et 
al., 2012; Xiao et al., 2015; Spanoudes, Nguyen, 2017; 
Subramanya, Somani, 2017; Vijaya, Sivasankar, 2018). Hence, 
our goal is to examine the performance of multiple approaches to 
explanatory variable selection and to compare the results with 
literature utilizing the same customer churn dataset. 

2.1 Filter selection 

Fisher score – FS is univariate selection method, returns feature 
ranks. Important features are expected to exhibit similar 
observed values in the one class and different observed values 
across different classes. This intuition is denoted in formula (1), 
where 𝑆𝑖 stands for Fisher score, 𝜇𝑖𝑗 and 𝜌𝑖𝑗2  are the mean and 
variance of i-th feature in the j-th class respectively 𝑛𝑗 is the 
number of instances in the j-th class, and 𝜇𝑖 is the mean of the i-
th feature (acc. Aggarwal, 2014; Bagherzadeh-Khiabani et al., 
2016). 

 𝐹𝑆𝑖 =
∑ 𝑛𝑗(𝜇𝑖𝑗 − 𝜇𝑖)2𝐾
𝑘=1

∑ 𝑛𝑗𝐾
𝑘=1 𝜌𝑖𝑗2

 1) 

 

Entropy-based measures – EBMs are based on an idea of 
measuring uncertainty, the unpredictability of the variable. In the 
paper, three types of information measures are examined: (1) 
information gain, (2) information gain ratio, and (3) symmetrical 
uncertainty criterion. 

Information gain (IG) is denoted in formula (2), where 𝐻(𝑓𝑖) 
represents entropy of i-th feature, 𝐻(𝐶) stands for class entropy, 
and 𝐻(𝑓𝑖|𝐶) amounts to joint entropy of 𝑓𝑖 and C. Features with 
high IG are considered necessary, this predicament also holds for 
IGR and SU (acc. Aggarwal, 2014; Bagherzadeh-Khiabani et al., 
2016; Duda et al., 2012). 

 𝐼𝐺(𝑓𝑖 ,𝐶) = 𝐻(𝑓𝑖) + 𝐻(𝐶) − 𝐻(𝑓𝑖|𝐶) (2) 

IG suffers from a bias towards multi-valued features, to correct 
that different metric was proposed – information gain ratio 
(IGR). IGR is denoted in formula (3) (acc. Aggarwal, 2014; 
Bagherzadeh-Khiabani et al., 2016; Duda et al., 2012). 
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 𝐼𝐺𝑅(𝑓𝑖,𝐶) =
𝐼𝐺(𝑓𝑖,𝐶)
𝐻(𝑓𝑖)

 (3) 

IGR is limited by its asymmetry. To deal with both lack of 
symmetry and bias towards multi-valued features, symmetrical 
uncertainty criterion (SU) was suggested. SU is denoted in 
formula (4) (acc. Aggarwal, 2014; Bagherzadeh-Khiabani et al., 
2016; Duda et al., 2012). 

 𝑆𝑈(𝑓𝑖,𝐶) = 2
𝐼𝐺(𝑓𝑖,𝐶)

𝐻(𝑓𝑖) + 𝐻(𝐶)
 (4) 

OneR – OneR is univariate selection method, returns feature 
ranks. It creates a root-level decision tree for each feature and 
target class. For each such a tree, the error rate is calculated. 
Features with a low error rate are considered important (acc. 
Bagherzadeh-Khiabani et al., 2016). 

Relief – Relief is multivariate selection method, returns feature 
ranks. It randomly samples observations and locates its nearest 
neighbor in the same and different target class; feature 
importance is adjusted subsequently. A significant feature set is 
assumed to have homogeneous values for each class, 
heterogeneous values across classes (Kononenko, 1994). 

 

Figure 1. Categorization of explanatory variable selection methods, Source: 3, 4 

Correlation-based feature selection – CFS is multivariate 
selection method, returns feature subset. CFS measures how are 
features in feature set correlated with each other and with the 
target class. A feature set with high correlation with class and 
low correlation amongst features is preferred. This intuition is 
denoted in formula (5), where 𝑀𝑆 stands for heuristic “merit” of 
a feature subset 𝑆 consisting of 𝑘 features, 𝑟𝑐𝑓���� is the mean 
feature-class correlation for 𝑓 𝜖 𝑆, and 𝑟𝑓𝑓����  is the average feature-
feature inter-correlation (Dash, Liu, 2003; Hall, 1999). Search 
through feature subset space is done through the best-first 
forward search. 

 𝑀𝑆 =
𝑘𝑟𝑐𝑓����

�𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓����
 (5) 

Consistency-based filter – CBF is multivariate selection method, 
returns feature subset. CBF evaluates how consistently belong 
observations with the same set of feature values to target class 
(continuous feature values must be discretized). The algorithm 
finds a feature subset relying on Liu’s consistency measure. 
Consistency measure is denoted in formula (6) (acc. 
Arauzo-Azofra, 2008). Search through feature subset space is 
also maintained with the best-first forward search. 

 
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

= 1 −  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (6) 

 
2.2 Wrapper selection 

Recursive feature elimination – RFE is popular multivariate 
selection method, returns feature ranks. The algorithm fits 
classification learner to the full feature set. Each feature is 
ranked using the classification learner (its coefficients / 
importance). At each iteration of the algorithm, top-ranked 
features are retained (low ranked features are eliminated), the 
classification learner is refit and scored. The feature set with 
learner’s best performance is chosen. RFE was originally 
proposed with linear SVM (see Guyon et al., 2002), procedure, 
however, can be utilized with different classification learners. 
We combine RFE with classification methods LOGIT, RF, RBF-

SVM. The author considers RFE to be wrapper selection 
procedure based on the implementation used (see Kuhn, 2008); 
however, opinions on the matter differ (see Aggarwal, 2014; 
Guyon et al., 2002).  

3 Classification methods 

From a machine learning viewpoint, customer churn prediction 
is perceived as a binary classification problem with a purpose to 
assign observations (customers) into one of two classes 
(churners, non-churners). There is a vast amount of research 
dedicated to classification method selection; however, we have 
decided to apply (1) simple and interpretable classification 
methods (LOGIT, CIT) and (2) more complex classification 
methods, with the proven performance considering given 
dataset (RF, RBF-SVM), acc. Verbeke et al. (2012). 

Logistic regression – LOGIT is a parametric statistical method 
which estimates the probability of an event (discrete response 
variable), based on known circumstances (explanatory 
variables). LOGIT models tend to suffer from the influence of 
confounding factors and overfitting, to prevent that we used 
LOGIT with L1 and L2 regularization forms (Fan et al., 2008). 
LOGIT is straightforward to understand and interpret; it is also 
broadly used as classification baseline. 

Conditional inference tree – CIT is non-parametric decision tree 
method (DT). Common implementations of DT tend to overfit 
and endure bias towards selected features. To address that, 
Hothorn et al. (2006) propose to base the splitting criterion on 
resampling and multiple inference tests, resulting in CIT. Its 
prediction ability is proven to be on par with pruned DT with no 
bias towards selected explanatory variables (see Horton et al., 
2006; Horton, Zeileis, 2015). 

Random forest – RF is non-parametric ensemble method which 
combines DTs such that each model is built upon randomly 
sampled explanatory variables (with replacement), votes of 
individual DTs are aggregated to form the prediction (Breiman, 
2001). RF models are prone to overfitting and often produce 
satisfying prediction results without extensive hyperparameter 
search. 
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Support vector machine – Gaussian radial basis function SVM 
(RBF-SVM) is a non-parametric method that constructs 
hyperplane in high-dimensional space which has the largest 
distance (maximum-margin) between borderline observations 
(support vectors) while separating classes. Use of RBF kernel 
trick enables more complex boundaries in original feature space, 
which may lead to overfitting when not having enough 
observations (acc. Jin, Wang, 2012). 

4 Research methodology 

4.1 Dataset 

 We utilize public telecommunication dataset, originally 
published on UCI Machine learning repository, which is now 
part of the C50 package in CRAN. The dataset is popular in 
customer churn prediction research (see Verbeke et al., 2012; 
Vafeiadis et al., 2015; Mehreen et al., 2017) enabling broader 
discussion of results. It consists of 5000 observations, 19 
explanatory variables (features), and 1 response variable (churn). 

The features are largely based on transactional data. Observed 
churn rate is 14.14 %.  

4.2 Performance metrics 

Accuracy – Performance of classification methods is routinely 
evaluated with confusion matrix and related measures. One of 
the popular metrics is 𝐴𝐶𝐶. It is defined as follows (Powers, 
2011):  

 𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 , 7) 

wherein numerator depicts a number of correctly classified 
positive (𝑇𝑃) and negative examples (𝑇𝑁), in the denominator 
we have sum a of correctly (𝑇𝑃 +  𝑇𝑁) and incorrectly 
classified examples (𝐹𝑃 +  𝐹𝑁). Accuracy is used for clear 
interpretability; however, it is threshold dependent and is not 
reliable when dealing with imbalanced classes. 

 
Table 1. Churn dataset - variable names and data types 

Variable name Description R dtype 
state  factor 
account_length number of months as an active user int 
area_code  factor 
international_plan has an international plan (yes/no) factor 
voice_mail_plan has voicemail plan (yes/no) factor 
number_vmail_messages number of voice mail messages int 
total_day_minutes total sum of day call minutes num 
total_day_calls total number of day calls int 
total_day_charge total sum of day charge num 
total_eve_minutes total sum of evening call minutes num 
total_eve_calls total number of evening calls int 
total_eve_charge total sum of evening charge num 
total_night_minutes total sum of night call minutes num 
total_night_calls total number of night calls int 
total_night_charge total sum of night charge num 
total_intl_minutes total sum of international call minutes num 
total_intl_calls total number of international calls int 
total_intl_charge total sum of international charge num 
number_customer_service_calls number of calls to customer service int 
churn response variable logi 

Source: author 

Top-decile lift – In retention campaign, the only a fraction of 
customers can be contacted and offered discount or premium 
service. To address that, 𝑇𝐷𝐿 as an extension of 𝐴𝐶𝐶 measure is 
often applied. It is calculated as a ratio of 𝐴𝐶𝐶𝑠, with 𝐴𝐶𝐶 for 
customers in top-decile propensity to churn (churn score) in the 
numerator and 𝐴𝐶𝐶 for whole customer base in the denominator. 
𝑇𝐷𝐿  is popular for its practical implications; however, it is 
threshold dependent and ignores variations in fraction 
selection (Verbeke et al., 2012). 

Area under the receiver operating curve – Classification model 
is expected to produce churn score 𝑠 = 𝑠(𝑥), which is a function 
of feature vector 𝑥; probability density function of corresponding 
scores is described as 𝑓𝑘(𝑠), with cumulative distribution 
function 𝐹𝑘(𝑠) and two classes 𝑘 ∈ {0,1}. 𝐴𝑈𝐶/𝑅𝑂𝐶 is then 
outlined in Eq. 8 (Hand, 2009). 

 𝐴𝑈𝐶/𝑅𝑂𝐶 = � 𝐹0(𝑠)𝑓1(𝑠)𝑑𝑠 
∞

−∞
  8) 

𝐴𝑈𝐶/𝑅𝑂𝐶 notion can be interpreted as a probability that 
randomly drawn member of class 0 will produce a lower churn 
score than randomly drawn member of class 1. 𝐴𝑈𝐶/𝑅𝑂𝐶 is the 
most popular measure of classification performance due to 
threshold independence (acc. Bradley, 1997), albeit it suffers 
from several conceptual issues (see Hand, 2009). 

 

 

4.3 Experimental design and implementation 

Performance of different feature selection techniques is 
examined through machine learning pipeline consisting of four 
main steps – (1) data processing, (2) feature selection, (3) model 
training and (4) model evaluation; their linkage is characterized 
in Fig. 2. To ensure the stability of the outcomes, the process is 
repeated 50 times. The pipeline is implemented in the R 
language for statistical programming, specifically in 
Microsoft R 3.5.1. 

Data processing – Original churn dataset is randomly stratified 
into the train (60 % of examples) and test set (40 % of 
examples). Data transformations are performed on the train set 
and projected to the test set to prevent data leak. Non-binary 
factor columns are concealed with the one-hot encoding scheme. 
Numerical/integer features are expanded to 2nd-degree 
interaction terms, which results in a total of 158 explanatory 
variables. Consequently, all numerical/integer features are 
centered and scaled. Features with near zero variability are 
removed. 

Feature selection – Processed train set serves as the only input to 
feature selection block. To address computational complexity 
and class imbalance in the feature selection procedure, we 
propose a balanced clustering method to reduce the number of 
observations. The algorithm is described with pseudo-code in 
Fig. 3. It is worth noting that the upper boundary for the 
expected number of examples per class is limited by properties 
of the train set. The procedure is implemented with clustering 
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around medoids and balancing classes with 250 observations per 
each, producing a total of 500 observations. The resulting set is 

then utilized over selection schemes. 

 

 

Figure 2. Conceptual depiction of machine learning pipeline, Source: author 

To ensure the algorithm captures the original data structure, 
projection to two-dimensional space is made with Isomap 
embeddings in Fig. 4. The structure of the train set after balanced 
clustering resembles the original train set, the majority class of 
non-churners is largely under-sampled, which is to be expected. 

We focus on two types of selection procedure – filter selection 
and wrapper selection. In filter-based selection whole train set is 
utilized at once, feature importance is estimated, unimportant 

features are filtered out. For wrapper-based selection, stratified 
4-fold cross validation with 2 repeats is utilized in RFE 
procedure.  RFE classification learner is subject to randomized 
hyperparameter search with 5 steps; target metric for both RFE 
selection and parameter search is set to 𝐴𝑈𝐶/𝑅𝑂𝐶, as it is not 
subjective-dependent. Number of features to be selected is the 
function of each procedure, albeit univariate filter selection is set 
to return at least 20 explaining variables. 

 

Algorithm 1: 
1.1 for each class in target class do: 
 1.2 get feature data, where target class equals class 
 1.3 cluster features, set number of clusters to expected number of observations per target class 
 1.4 get the observation which is the nearest to each cluster center 
 1.5 add a class label to the selected observations 
 1.6 return the temporary results  
1.7 row-bind temporary results to the feature train set 

Figure 3. Balanced clustering for feature selection, Source: author 

Model training and evaluation – Model training block digests 
processed train set and annotations of feature selection and 
classification method. A classifier is trained for all combinations 
of feature selection method and classification method. 
Experimental setup for randomized hyperparameter search is 
based on stratified 4-fold cross validation with 2 repeats; 
parameter search is done in 15 steps; its target metric is set to 
𝐴𝑈𝐶/𝑅𝑂𝐶. Final classification learners are built on top of the 

processed train set, feature selection, and randomized hyper-
parameter search. Learner's performance on unseen data is 
estimated on the processed test set; to address bias-variance 
trade-off performance on the processed train set is also 
evaluated. Applied metrics are described in detail in the previous 
section. 

 

 

 

Figure 4. Structure of the original train set (left) and train set after balanced clustering (right), Source: author

5 Results 

In order to summarize the performance of multiple approaches to 
explanatory variable procedures, mean point estimates across 
feature selection methods are depicted in Tab.3; the best 
indicators are marked in bold; 95 % confidence intervals for 
underlying distributions are constructed. 

Classifiers combined with RFE selection show marginally better 
performance on both train and on test sets. Consistency, EBM 
schemes, and OneR display noteworthy behavior when 
significantly reducing the number of original features while (1) 
being almost on par with RFE procedures in all performance 
measures and (2) being less computationally demanding. Other 

selection procedures do not perform that well, which is induced 
by a considerable drop in retained features. 

Statistical significance of a difference is assessed by paired t-
tests with Bonferroni correction. Test performance of each 
selection scheme is compared to test performance without 
selection procedure; observations are paired on classification 
learners and pipeline repeats. 𝐻0 states that true difference in 
sample means is equal to 0, 𝐻𝐴 means the true difference in 
sample means is not equal to 0. We reject 𝐻0 for all feature 
selection schemes except SVM-RFE, LR-RFE, RF-RFE on 
unadjusted 𝛼 = 0.01; this holds for all performance indicators. 
In other words, there is not enough evidence that SVM-RFE, 
LR-RFE, RF-RFE selection schemes improve test set 
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performance; on the other hand, previously mentioned 
procedures allow us to reduce explanatory variables by ~ 40 % 
while retaining the same level of classification performance as 

with original dataset. Other feature selection methods appear to 
lead to inferior results. 

Table 2. Classification methods with respective parameters 

Classification method Optimized parameters Implementation 
LOGIT regularization forms: {L1, L2 dual, L2 primal}, cost Fan et al., 2008 
CIT max tree depth, p-value threshold Hothorn, Zeileis, 2015 
RF number of selected predictors, splitting rule, minimal node size Wright, Ziegler, 2017 
SVM kernel: {RBF}, cost, sigma Karatzoglou et al., 2004 

Source: author

To inspect explanatory variable importance in original feature 
space (Tab. 1), co-occurrence matrix of selection scheme-feature 
is constructed; the number of feature occurrence for both 
individual and interaction terms are included. Moreover, the co-
occurrence matrix is scaled by the maximum possible incidence 

of a feature (scheme-feature pair for the procedure without 
feature selection). The result of the outlined steps is depicted 
using heatmap and dendrograms in Fig. 5; the explanatory 
variable state is not present as it is eliminated in data 
preprocessing step due to near-zero variance. 

Table 3. Classification performance indicators aggregated by the feature selection method 

feature 
selection 
method 

number of 
features 

feature 
selection 

runtime [s] 

Train 
ACC 

(95 % CI) 

Train 
AUC 

(95 % CI) 

Train 
TDL 

(95 % CI) 

test 
ACC 

(95 % CI) 

test 
AUC 

(95 % CI) 

test 
TDL 

(95 % CI) 

CFS 10.3 6.1 
0.923 

(0.852, 
0.994) 

0.911 
(0.801, 
1.022) 

5.678 
(3.441, 
7.914) 

0.905 
(0.860, 
0.950) 

0.874 
(0.813, 
0.935) 

5.171 
(3.462, 
6.880) 

Consistency 18.2 139.6 
0.939 

(0.870, 
1.007) 

0.929 
(0.836, 
1.021) 

6.165 
(4.432, 
7.898) 

0.919 
(0.877, 
0.960) 

0.890 
(0.848, 
0.931) 

5.696 
(4.381, 
7.011) 

FS 24.8 0.1 
0.920 

(0.860, 
0.979) 

0.907 
(0.797, 
1.017) 

5.632 
(3.822, 
7.442) 

0.904 
(0.867, 
0.941) 

0.868 
(0.786, 
0.950) 

5.123 
(3.809, 
6.437) 

Relief 25.4 179.9 
0.915 

(0.850, 
0.980) 

0.896 
(0.759, 
1.032) 

5.444 
(3.309, 
7.579) 

0.898 
(0.860, 
0.935) 

0.852 
(0.765, 
0.940) 

4.868 
(3.430, 
6.305) 

IGR 44.4 0.6 
0.937 

(0.872, 
1.002) 

0.927 
(0.831, 
1.022) 

6.124 
(4.429, 
7.819) 

0.918 
(0.878, 
0.958) 

0.889 
(0.836, 
0.941) 

5.652 
(4.281, 
7.024) 

IG 45.0 0.7 
0.939 

(0.876, 
1.003) 

0.930 
(0.844, 
1.016) 

6.196 
(4.603, 
7.789) 

0.920 
(0.883, 
0.957) 

0.892 
(0.855, 
0.929) 

5.711 
(4.463, 
6.959) 

SU 47.5 0.5 
0.940 

(0.875, 
1.005) 

0.929 
(0.839, 
1.020) 

6.196 
(4.642, 
7.750) 

0.920 
(0.883, 
0.958) 

0.892 
(0.845, 
0.939) 

5.751 
(4.517, 
6.984) 

OneR 51.4 0.5 
0.943 

(0.881, 
1.005) 

0.933 
(0.849, 
1.016) 

6.286 
(4.883, 
7.688) 

0.923 
(0.889, 
0.958) 

0.895 
(0.862, 
0.928) 

5.856 
(4.777, 
6.935) 

SVM-RFE 87.9 2190.3 
0.952 

(0.884, 
1.020) 

0.940 
(0.860, 
1.020) 

6.465 
(4.965, 
7.965) 

0.932 
(0.883, 
0.980) 

0.900 
(0.865, 
0.935) 

6.108 
(4.692, 
7.524) 

LR-RFE 91.4 2190.4 
0.951 

(0.879, 
1.023) 

0.940 
(0.858, 
1.022) 

6.437 
(4.854, 
8.019) 

0.931 
(0.880, 
0.982) 

0.899 
(0.859, 
0.939) 

6.088 
(4.614, 
7.562) 

RF-RFE 96.8 2190.2 
0.952 

(0.881, 
1.022) 

0.940 
(0.859, 
1.020) 

6.454 
(4.916, 
7.991) 

0.932 
(0.881, 
0.983) 

0.900 
(0.860, 
0.939) 

6.114 
(4.626, 
7.603) 

none 158.0 0.0 
0.950 

(0.882, 
1.018) 

0.940 
(0.863, 
1.016) 

6.441 
(5.030, 
7.853) 

0.931 
(0.880, 
0.982) 

0.899 
(0.861, 
0.936) 

6.075 
(4.562, 
7.588) 

Source: author

There are two evident analytic perspectives arising from co-
occurrence matrix, (1) feature importance across different 
selection procedures and (2) underlying similarity amongst 
results of feature selection schemes. 

Considering the former perspective (1), three diverse groups of 
impact on the target variable are identified by the row-wise 
dendrogram. The bottom cluster consists of just one element – 
international_plan, which is recognized to be very important by 
all selection schemes; the middle cluster contains three elements 
– total_day_charge, number_customer_service_calls, 

total_day_minutes, that are also observed to be important 
indicators of customer's propensity to churn; the structure of the 
upper cluster is rather ambiguous, except for area_code element 
which is generally omitted. 

From the latter perspective (2), three distinct groups of feature 
structures are identified by the column-wise dendrogram. The 
left cluster contains multivariate filter selection methods and 
Fischer’s score; the middle cluster consists of EBM schemes and 
OneR; the right cluster is reserved for RFE procedures. The 
underlying similarity amongst selection schemes appears to be 
driven by both number and structure of included features; this is 
supported by the internal coherence of clusters considering the 
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performance of classification learner (see Tab. 3), albeit 
Consistency method does exhibit different behavior. 

To outline a prediction performance of individual classification 
learners, mean point estimates across algorithms and 
selection/no selection schemes are displayed in Tab.4; the best 
indicators are depicted in bold; 95 % confidence intervals for 
underlying distributions are constructed. 

RF algorithm presents superior performance with very low bias 
and acceptable variance across all performance measures; 
however, the drop in test performance might be a sign of 
overfitting. LOGIT method, on the other hand, displays higher 
bias and very low variance as a consequence of regularization. 
CIT and SVM learners exhibit akin performance with low bias 
and moderate variance. 

To examine the behavior of classification learners further, 
another CIT model is built on top of the pipeline results; the 

response variable is top-decile lift measured on the test set, 
explanatory variables are feature selection scheme and 
classification method. The motivation for analyzing test TDL 
comes from its link to retention campaign profit dynamics (see 
Verbeke et al., 2012). The tree structure is charted in Appendix 
1.; it becomes apparent that a feature selection procedure does 
not lead to significant improvement of the performance metric 
when combined with classification learners with embedded 
feature selection. This observation is supported by terminal 
nodes 12 (CIT), 18 (RF) and 23 (LOGIT) which blend learner’s 
performance with and without feature selection. SVM learner, 
however, displays leap in performance when coupled with 
feature selection scheme. This conclusion is backed by 
comparison of boxplot charts in terminal node 10 (Consistency, 
EBMs, OneR) or 12 (RFE) with terminal node 15 (no feature 
selection scheme).  

 

Figure 5. Scaled co-occurrence matrix for selection scheme-feature pairs, Source: author 

The subsequent dimension of analysis comprises of time 
complexity of classification learners as a function of a number of 
explanatory variables (𝑛). The empirical relationships are 

exposed by locally estimated scatterplot smoothing (LOESS) 
and depicted in Fig. 6. 

 
Table 4. Classification performance indicators aggregated by the classification method 

classification 
method 

classification 
runtime [s] 

train 
ACC 

(95 % CI) 

Train 
AUC 

(95 % CI) 

Train 
TDL 

(95 % CI) 

test 
ACC 

(95 % CI) 

test 
AUC 

(95 % CI) 

test 
TDL 

(95 % CI) 

LOGIT 21.8 
0.893 

(0.865, 
0.920) 

0.874 
(0.814, 
0.934) 

4.891 
(3.727, 
6.054) 

0.890 
(0.864, 
0.917) 

0.868 
(0.808, 
0.928) 

4.782 
(3.647, 
5.917) 

CIT 52.2 
0.941 

(0.908, 
0.974) 

0.917 
(0.865, 
0.970) 

6.335 
(5.228, 
7.442) 

0.925 
(0.891, 
0.959) 

0.879 
(0.824, 
0.933) 

5.832 
(4.596, 
7.067) 

SVM 244.3 
0.939 

(0.898, 
0.981) 

0.919 
(0.865, 
0.973) 

6.315 
(5.064, 
7.565) 

0.922 
(0.895, 
0.950) 

0.897 
(0.851, 
0.943) 

5.806 
(4.855, 
6.758) 

RF 361.7 
0.980 

(0.941, 
1.020) 

0.996 
(0.975, 
1.017) 

6.965 
(6.452, 
7.478) 

0.940 
(0.899, 
0.981) 

0.906 
(0.861, 
0.951) 

6.318 
(5.013, 
7.623) 

Source: author 

From asymptotic perspective there appear to be three classes of 
behavior; (1) there is no clear relationship between number of 
features and classification runtime, suggesting complexity of 
𝑂(1), LOGIT flat line indicates such a nature; (2) there seems to 
be linear relationship between number of explanatory variables 
and classification runtime, indicating complexity of 𝑂(𝑛), this 
appears to be valid for SVM and RF models; (3) there is 
quadratic relationship between number of included variables and 
classification runtime, implying complexity of 𝑂(𝑛2), this 

behavior fits the shallow convex curvature of CIT arc. RF 
LOESS, however, shows the systematic residual pattern in the 
middle and right sections of the figure; the observed 
phenomenon is induced by hyperparameter search step 
(sensitivity of a weak learner to a number of predictors and its 
depth). 
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6 Conclusions and future work 

In an environment with steep data growth, it becomes inevitably 
hard to identify useful patterns and extract relevant knowledge. 
Thus, the goal of this paper is to examine the explanatory 
variable selection procedure in customer churn domain, 
specifically (1) its effect on prediction performance of a 
classification learner; (2) its behavior across explanatory 
variables; (3) a link between the number of included variables 
and classification runtime. The general topic is examined using 
an original experimental setup and utilizes publicly available 
dataset. 

We witness slight improvement in learner’s prediction 
performance when combined RFE selection, although the 
difference is not found statistically significant. From another 
viewpoint, RFE schemes allow us to reduce the number of 
features by ~ 40 % while retaining the same level of 
classification performance as with full-featured dataset. 
Consistency, EBM and OneR methods present notable behavior 

when heavily reducing the number of features while (1) being 
almost on par with RFE schemes across all performance 
measures and (2) being computationally less demanding. 

When examining underlying feature importance across different 
selection schemes (see Fig. 5), international_plan, 
total_day_charge, number_customer_service_calls and 
total_day_minutes are recognized as important to the churn 
event; relevance of other features is inconclusive, except for 
area_code which is generally disregarded. From the perspective 
of business enterprise, the aforementioned findings may 
represent an invaluable insight into customer behavior. The 
latent similarity amongst results of feature selection procedures 
seem to be induced by number and structure of retained variables 
(see Fig. 5); the observation is supported by the internal 
coherence of clusters considering the performance of 
classification learner (see Tab. 3), albeit Consistency method 
does conduct adversely. 

 

 

Figure 6. LOESS approximation of classification learner’s runtime as a function of a number of included variables, Source: author 

Considering the overall performance of classification learners, 
RFs exhibit superior behavior across all metrics. LOGIT learners 
distinct with higher bias and very low variance both of which are 
induced by regularization. CIT and SVM algorithms show 
comparable performance with low bias and moderate variance 
(see Tab. 4). We exploit a link between classifier’s ability to 
generalize and feature selection procedure through the CIT 
model (see Appendix 1.). It becomes evident that incorporation 
of selection scheme does not improve performance metric when 
combined with classification learners with embedded feature 
selection. On the other hand, practitioners and researchers can 
tackle performance vs runtime trade-off with explicitly including 
selection scheme into machine learning pipeline; more 
specifically, by combining classifier with runtime sensitive to a 
number of features (CIT, SVM, RF) with efficient and 
computationally cheap univariate filter procedure (EBM, OneR). 
We can notice comparable benefits in EBM + SVM setup, which 
reduces computational runtime by ~ 15 % and improves test set 
TDL by ~ 5 % when compared to none + SVM setup (see 
Appendix 2.). 

To illustrate the relevance of other parts of machine learning 
solution, we compare obtained results with selected research 
papers which utilize the same dataset, although their primary 
goals do not involve feature selection. We achieved performance 
comparable with Verbeke et al. (2012), the main discrepancy 
appears amongst LOGIT models where our incorporation of 
interaction features in data processing step leads to increase in 
test TDL by a factor of ~ 1.5. On the other hand, works of 
Vafeiadis et al. (2015) and Mehreen et al. (2017) exploit 

concepts of meta-learning which lead to increase in test ACC 
by ~ 5-10 % when compared to our endeavors. 

As for future research of selection procedures in customer churn 
domain, we suggest considering more datasets and conceptually 
diverse classification learners. To explicitly address the trade-off 
between a number of features and information retained, multi-
objective optimization might be leveraged in novel types of 
selection procedures. Another possible direction for research 
involves feature selection ensembles; meta-learning selection 
based on votes of multiple selection methods. From the 
perspective of the enterprise, adjusting feature selection 
procedures to business objectives in order to analyze retention 
drivers in profit perspective might be also a topic of interest. 
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Appendix 1. Condition inference tree describing test TDL performance as a function of a feature selection procedure and classification 
method, Source: author 
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Appendix 2. Classification performance indicators aggregated per feature selection and classification method, Source: author 

feature selection 
method 

classification 
method 

train 
ACC 

(95 % CI) 

train 
AUC 

(95 % CI) 

train 
TDL 

(95 % CI) 

test 
ACC 

(95 % CI) 

test 
AUC 

(95 % CI) 

test 
TDL 

(95 % CI) 

CFS LOGIT 
0.872 

(0.856, 
0.888) 

0.842 
(0.802, 
0.882) 

4.013 
(2.963, 
5.063) 

0.872 
(0.853, 
0.890) 

0.837 
(0.790, 
0.884) 

3.954 
(2.753, 
5.155) 

CFS CIT 
0.930 

(0.904, 
0.956) 

0.909 
(0.857, 
0.960) 

5.964 
(5.022, 
6.907) 

0.910 
(0.890, 
0.931) 

0.865 
(0.821, 
0.910) 

5.333 
(4.477, 
6.189) 

CFS SVM 
0.924 

(0.893, 
0.956) 

0.904 
(0.870, 
0.937) 

5.874 
(4.823, 
6.926) 

0.917 
(0.892, 
0.941) 

0.894 
(0.871, 
0.917) 

5.609 
(4.817, 
6.401) 

CFS RF 
0.965 

(0.927, 
1.003) 

0.990 
(0.966, 
1.014) 

6.858 
(6.215, 
7.501) 

0.922 
(0.893, 
0.951) 

0.900 
(0.878, 
0.922) 

5.788 
(4.833, 
6.743) 

Consistency LOGIT 
0.890 

(0.872, 
0.907) 

0.871 
(0.848, 
0.895) 

4.827 
(3.996, 
5.658) 

0.888 
(0.869, 
0.906) 

0.868 
(0.838, 
0.898) 

4.760 
(3.908, 
5.612) 

Consistency CIT 
0.939 

(0.924, 
0.955) 

0.925 
(0.893, 
0.956) 

6.318 
(5.800, 
6.836) 

0.922 
(0.904, 
0.939) 

0.880 
(0.847, 
0.914) 

5.759 
(5.161, 
6.358) 

Consistency SVM 
0.943 

(0.915, 
0.971) 

0.920 
(0.894, 
0.947) 

6.457 
(5.636, 
7.277) 

0.928 
(0.906, 
0.950) 

0.900 
(0.879, 
0.922) 

5.993 
(5.282, 
6.704) 

Consistency RF 
0.984 

(0.967, 
1.001) 

0.999 
(0.994, 
1.003) 

7.057 
(7.004, 
7.109) 

0.937 
(0.919, 
0.954) 

0.910 
(0.892, 
0.928) 

6.271 
(5.689, 
6.852) 

FS LOGIT 
0.885 

(0.863, 
0.907) 

0.856 
(0.790, 
0.923) 

4.553 
(3.682, 
5.424) 

0.884 
(0.863, 
0.904) 

0.851 
(0.765, 
0.937) 

4.507 
(3.642, 
5.372) 

FS CIT 
0.922 

(0.893, 
0.951) 

0.898 
(0.828, 
0.968) 

5.673 
(4.567, 
6.780) 

0.907 
(0.878, 
0.936) 

0.862 
(0.778, 
0.946) 

5.158 
(4.041, 
6.276) 

FS SVM 
0.918 

(0.881, 
0.955) 

0.891 
(0.832, 
0.950) 

5.635 
(4.364, 
6.906) 

0.910 
(0.881, 
0.938) 

0.875 
(0.802, 
0.948) 

5.331 
(4.213, 
6.449) 

FS RF 
0.955 

(0.908, 
1.001) 

0.982 
(0.934, 
1.031) 

6.668 
(5.707, 
7.629) 

0.916 
(0.881, 
0.950) 

0.885 
(0.814, 
0.956) 

5.496 
(4.246, 
6.746) 

Relief LOGIT 
0.875 

(0.856, 
0.895) 

0.825 
(0.728, 
0.923) 

4.052 
(3.072, 
5.032) 

0.875 
(0.856, 
0.893) 

0.824 
(0.737, 
0.910) 

4.016 
(3.072, 
4.961) 

Relief CIT 
0.919 

(0.887, 
0.951) 

0.889 
(0.799, 
0.978) 

5.564 
(4.343, 
6.784) 

0.902 
(0.874, 
0.930) 

0.848 
(0.763, 
0.933) 

4.955 
(3.788, 
6.122) 

Relief SVM 
0.911 

(0.876, 
0.945) 

0.881 
(0.810, 
0.951) 

5.435 
(4.245, 
6.624) 

0.903 
(0.879, 
0.927) 

0.863 
(0.789, 
0.936) 

5.143 
(4.290, 
5.996) 

Relief RF 
0.955 

(0.914, 
0.997) 

0.987 
(0.967, 
1.007) 

6.726 
(5.983, 
7.468) 

0.911 
(0.879, 
0.943) 

0.875 
(0.801, 
0.949) 

5.358 
(4.215, 
6.500) 

IGR LOGIT 
0.896 

(0.869, 
0.923) 

0.878 
(0.824, 
0.931) 

5.000 
(3.894, 
6.106) 

0.894 
(0.868, 
0.921) 

0.875 
(0.818, 
0.932) 

4.890 
(3.713, 
6.066) 

IGR CIT 
0.937 

(0.914, 
0.960) 

0.917 
(0.875, 
0.959) 

6.225 
(5.427, 
7.024) 

0.921 
(0.898, 
0.944) 

0.880 
(0.834, 
0.926) 

5.696 
(4.910, 
6.481) 

IGR SVM 
0.938 

(0.897, 
0.979) 

0.916 
(0.861, 
0.970) 

6.305 
(5.025, 
7.585) 

0.923 
(0.893, 
0.954) 

0.896 
(0.854, 
0.939) 

5.840 
(4.816, 
6.864) 

IGR RF 
0.978 

(0.943, 
1.012) 

0.996 
(0.980, 
1.012) 

6.967 
(6.460, 
7.474) 

0.934 
(0.904, 
0.965) 

0.904 
(0.862, 
0.946) 

6.183 
(5.154, 
7.213) 

IG LOGIT 
0.898 

(0.875, 
0.920) 

0.883 
(0.852, 
0.914) 

5.064 
(4.163, 
5.965) 

0.896 
(0.874, 
0.918) 

0.879 
(0.845, 
0.913) 

4.973 
(4.051, 
5.896) 

IG CIT 
0.939 

(0.920, 
0.958) 

0.921 
(0.894, 
0.948) 

6.303 
(5.692, 
6.915) 

0.921 
(0.901, 
0.941) 

0.882 
(0.846, 
0.917) 

5.717 
(4.957, 
6.477) 

IG SVM 
0.941 

(0.905, 
0.978) 

0.921 
(0.885, 
0.957) 

6.411 
(5.302, 
7.519) 

0.925 
(0.900, 
0.951) 

0.900 
(0.878, 
0.922) 

5.905 
(5.026, 
6.783) 

IG RF 0.980 
(0.950, 

0.997 
(0.986, 

7.005 
(6.727, 

0.936 
(0.911, 

0.908 
(0.888, 

6.249 
(5.408, 
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1.009) 1.008) 7.283) 0.961) 0.927) 7.090) 

SU LOGIT 
0.899 

(0.879, 
0.918) 

0.883 
(0.845, 
0.922) 

5.122 
(4.378, 
5.867) 

0.897 
(0.876, 
0.917) 

0.880 
(0.832, 
0.927) 

5.036 
(4.218, 
5.854) 

SU CIT 
0.938 

(0.917, 
0.959) 

0.915 
(0.868, 
0.962) 

6.261 
(5.511, 
7.012) 

0.922 
(0.900, 
0.944) 

0.883 
(0.837, 
0.929) 

5.737 
(4.915, 
6.558) 

SU SVM 
0.940 

(0.905, 
0.976) 

0.920 
(0.879, 
0.961) 

6.392 
(5.258, 
7.526) 

0.926 
(0.898, 
0.953) 

0.899 
(0.864, 
0.935) 

5.937 
(5.041, 
6.834) 

SU RF 
0.983 

(0.952, 
1.014) 

0.998 
(0.987, 
1.009) 

7.008 
(6.647, 
7.370) 

0.937 
(0.910, 
0.964) 

0.907 
(0.872, 
0.941) 

6.293 
(5.435, 
7.152) 

OneR LOGIT 
0.902 

(0.884, 
0.920) 

0.889 
(0.868, 
0.909) 

5.259 
(4.665, 
5.853) 

0.900 
(0.882, 
0.917) 

0.885 
(0.861, 
0.908) 

5.143 
(4.531, 
5.756) 

OneR CIT 
0.940 

(0.924, 
0.957) 

0.920 
(0.892, 
0.947) 

6.354 
(5.802, 
6.906) 

0.924 
(0.907, 
0.941) 

0.884 
(0.850, 
0.919) 

5.837 
(5.238, 
6.437) 

OneR SVM 
0.944 

(0.916, 
0.972) 

0.923 
(0.893, 
0.953) 

6.483 
(5.630, 
7.336) 

0.928 
(0.910, 
0.946) 

0.902 
(0.883, 
0.921) 

6.023 
(5.446, 
6.599) 

OneR RF 
0.986 

(0.964, 
1.008) 

0.999 
(0.993, 
1.005) 

7.046 
(6.862, 
7.230) 

0.941 
(0.924, 
0.959) 

0.911 
(0.892, 
0.929) 

6.422 
(5.869, 
6.975) 

SVM-RFE LOGIT 
0.900 

(0.879, 
0.921) 

0.891 
(0.870, 
0.911) 

5.211 
(4.614, 
5.807) 

0.896 
(0.877, 
0.914) 

0.882 
(0.863, 
0.901) 

5.061 
(4.462, 
5.659) 

SVM-RFE CIT 
0.956 

(0.942, 
0.970) 

0.929 
(0.898, 
0.959) 

6.806 
(6.438, 
7.174) 

0.942 
(0.927, 
0.956) 

0.890 
(0.864, 
0.915) 

6.405 
(5.966, 
6.845) 

SVM-RFE SVM 
0.958 

(0.936, 
0.980) 

0.942 
(0.918, 
0.966) 

6.783 
(6.295, 
7.271) 

0.931 
(0.913, 
0.949) 

0.911 
(0.895, 
0.928) 

6.073 
(5.482, 
6.664) 

SVM-RFE RF 
0.993 

(0.977, 
1.008) 

1.000 
(0.999, 
1.001) 

7.061 
(7.061, 
7.061) 

0.960 
(0.946, 
0.973) 

0.918 
(0.899, 
0.937) 

6.894 
(6.486, 
7.303) 

LR-RFE LOGIT 
0.896 

(0.876, 
0.916) 

0.888 
(0.870, 
0.905) 

5.112 
(4.531, 
5.693) 

0.893 
(0.873, 
0.913) 

0.879 
(0.858, 
0.901) 

4.983 
(4.389, 
5.577) 

LR-RFE CIT 
0.957 

(0.943, 
0.971) 

0.931 
(0.896, 
0.965) 

6.826 
(6.425, 
7.228) 

0.941 
(0.925, 
0.958) 

0.888 
(0.849, 
0.927) 

6.402 
(5.896, 
6.909) 

LR-RFE SVM 
0.956 

(0.931, 
0.981) 

0.940 
(0.916, 
0.965) 

6.747 
(6.201, 
7.293) 

0.930 
(0.914, 
0.946) 

0.910 
(0.892, 
0.928) 

6.056 
(5.527, 
6.584) 

LR-RFE RF 
0.995 

(0.981, 
1.009) 

1.000 
(0.999, 
1.000) 

7.061 
(7.061, 
7.061) 

0.960 
(0.948, 
0.972) 

0.918 
(0.899, 
0.936) 

6.911 
(6.609, 
7.213) 

RF-RFE LOGIT 
0.898 

(0.877, 
0.919) 

0.890 
(0.869, 
0.910) 

5.170 
(4.562, 
5.778) 

0.893 
(0.873, 
0.914) 

0.880 
(0.860, 
0.899) 

4.992 
(4.408, 
5.575) 

RF-RFE CIT 
0.958 

(0.948, 
0.969) 

0.929 
(0.900, 
0.958) 

6.854 
(6.556, 
7.152) 

0.944 
(0.931, 
0.956) 

0.890 
(0.853, 
0.926) 

6.463 
(6.089, 
6.837) 

RF-RFE SVM 
0.956 

(0.931, 
0.981) 

0.941 
(0.918, 
0.964) 

6.730 
(6.177, 
7.283) 

0.930 
(0.913, 
0.946) 

0.911 
(0.893, 
0.929) 

6.049 
(5.514, 
6.584) 

RF-RFE RF 
0.995 

(0.982, 
1.007) 

1.000 
(1.000, 
1.000) 

7.061 
(7.061, 
7.061) 

0.961 
(0.953, 
0.970) 

0.918 
(0.901, 
0.936) 

6.954 
(6.765, 
7.143) 

none LOGIT 
0.902 

(0.883, 
0.921) 

0.896 
(0.880, 
0.913) 

5.306 
(4.743, 
5.868) 

0.897 
(0.877, 
0.916) 

0.880 
(0.860, 
0.900) 

5.071 
(4.431, 
5.711) 

none CIT 
0.959 

(0.944, 
0.974) 

0.929 
(0.897, 
0.960) 

6.873 
(6.459, 
7.287) 

0.945 
(0.931, 
0.960) 

0.892 
(0.854, 
0.930) 

6.515 
(6.038, 
6.992) 

none SVM 
0.944 

(0.923, 
0.966) 

0.933 
(0.912, 
0.955) 

6.526 
(5.998, 
7.055) 

0.919 
(0.909, 
0.930) 

0.903 
(0.886, 
0.920) 

5.717 
(5.383, 
6.051) 

none RF 
0.995 

(0.981, 
1.009) 

1.000 
(1.000, 
1.000) 

7.061 
(7.061, 
7.061) 

0.963 
(0.956, 
0.970) 

0.919 
(0.901, 
0.937) 

6.996 
(6.873, 
7.119) 
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