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Abstract. The paper studies the solvability of nonlinear boundary value problems of the 
three-dimensional theory of elasticity for an isotropic inhomogeneous hemisphere under 
kinematic boundary conditions. We have proved the existence theorem and provided 
analytical, numerical methods for finding solutions. The development of mathematical 
methods to investigate the solvability of nonlinear spatial boundary value problems for 
isotropic and anisotropic inhomogeneous elastic bodies is very relevant. Therefore, the 
aim of this paper is to prove the existence theorem for solutions for an isotropic 
inhomogeneous hemisphere under set kinematic boundary conditions. The proposed 
research method includes reducing the original system of equilibrium equations defined 
by integral representations for displacements, based on Laplace's fundamental solutions, 
to a system of three-dimensional singular integral equations, the solvability of which is 
established using the symbol of the singular operator and the compressed-map principle. 
 
Keywords: inhomogeneous hemisphere, existence theorem, three-dimensional singular 
integral equations. 
1 Introduction 

To date, there are not many works devoted to the study of the 
solvability of spatial boundary value problems raised the elasticity 
theory (Vorovich, 1989; Novozhilov 1948]. The results have been 
obtained only for linear boundary value problems and by such 
well-known methods as the variational method and the method of 
potential and integral equations, which are based on fundamental 
solutions of homogeneous equilibrium equations (Novozhilov 
1948). By the variational method, the authors of (Vorovich 1989; 
Mikhlin 1962) solved linear problems for anisotropic elastic 
bodies in energy spaces. As for equations with constant and 
piecewise constant coefficients describing the equilibrium state of 
isotropic and piecewise homogeneous elastic bodies, the 
fundamental solutions have already been constructed so far. This 
work aims to study nonlinear boundary value problems for an 
isotropic inhomogeneous elastic hemisphere. Therefore, we 
proposed a method that suggests reducing the initial system of 
equilibrium equations to three-dimensional singular nonlinear 
integral equations with respect to the auxiliary vector function. 

2 Methods 

The basis of the method for spatial nonlinear boundary value 
problems is integral representations for the components of 
displacements based on fundamental solutions of Laplace's 
equation. Here, they are constructed using an approach based on 
the use of the harmonic Green's function of the Dirichlet problem 
for elastic bodies of a special configuration (ball, half-space, 
cylinder, etc.) and the theory of harmonic potential for arbitrary 
elastic bodies. This approach, unlike other proposed methods 
(Vorovich, 1989; Novozhilov 1948), does not require knowledge 
of particular solutions of the original homogeneous equations 
system and allows one to study nonlinear boundary value 
problems for a wider class of equilibrium equations with variable 
coefficients. A similar approach was previously used by an 
isotropic inhomogeneous elastic ellipsoid and a ball under 
kinematic boundary conditions (Timergalyev 2014; Yakupova 
2018). To study the solvability of the system of integral 
equations, the theory of multidimensional integral equations 
developed by Professor Mikhlin S.G. is used (Mikhlin, 1962). 

3 Results And Discussion 

In domain V, which is occupied by the elastic body, a system of 
equations of form is considered 

𝜎,𝑗
𝑘𝑗 + 𝑓𝑘 + 𝑋𝑘 = 0, 𝑘 = 1,2,3                                                           

𝜕𝑉: 𝑥12 + 𝑥22 + 𝑥32 = 1; 

                                                                                                   (1) 

 

(hereinafter, a summation from 1 to 3 is carried out with repeated 
Latin indexes), in which notations are accepted: 

𝑓1 =
𝜕
𝜕𝑥𝑗

(𝜎𝑗3𝜔2 − 𝜎𝑗2𝜔3),  𝑓2 =
𝜕
𝜕𝑥𝑗

(𝜎𝑗1𝜔3 − 𝜎𝑗3𝜔1), 

𝑓3 =
𝜕
𝜕𝑥𝑗

(𝜎𝑗2𝜔1 − 𝜎𝑗1𝜔2); 

𝜎𝑗𝑗 = 2𝜇𝜀𝑗𝑗 + 𝜆𝜀, 𝜎𝑗𝑘 ≡ 𝜎𝑘𝑗 = 𝜇𝜀𝑗𝑘, 𝑗 ≠ 𝑘;  𝜀 = 𝜀11 + 𝜀22 +
𝜀33;                 

𝜀𝑗𝑘 = 𝑒𝑗𝑘 + æ𝑗𝑘 , 𝑒𝑗𝑗 = 𝑢𝑗,𝑗 , 𝑒𝑗𝑘 = 𝑢𝑗,𝑘 + 𝑢𝑘,𝑗 , æ𝑗𝑗
= (𝜔1

2 + 𝜔2
2 +  𝜔3

2 − 𝜔𝑗2)/2, 

æ𝑗𝑘 = −𝜔𝑗𝜔𝑘 , 𝑗 ≠ 𝑘,𝑘 = 1,2,3;𝜔1 = �𝑢3,2 − 𝑢2,3�/2, 

𝜔2 = �𝑢1,3 − 𝑢3,1�/2,  𝜔3 = �𝑢2,1 − 𝑢1,2�/2;  𝜇 =
𝐸

2(1 + 𝜈)
, 

𝜆 =
𝜈𝐸

(1 − 2𝜈)(1 + 𝜈)
; 

                                                                                                  (2) 

hereinafter, symbol 𝑎,𝑗 stands for partial derivative 𝑎,𝑗 = 𝜕𝑎/𝜕𝑥𝑗. 

The system of equations (1) together with relations (2) describes 
the equilibrium state of an elastic isotropic inhomogeneous body. 
In this case: 𝜎𝑘𝑗- components of stresses, 𝜀𝑗𝑘 - components of 
strains, 𝑢 = (𝑢1,𝑢2,𝑢3) - a vector of displacements, 𝑋𝑘(𝑘 =
1,2,3 - components of volumetric external forces acting on an 
elastic body; 𝜇 - a shear modulus of elasticity, 𝜆 - a Lame's 
parameter, 𝐸 = 𝐸(𝑥) - a tensile modulus of elasticity, 𝜈 = 𝜈(𝑥) - 
a Poisson's ratio, 𝑥 = (𝑥1, 𝑥2,𝑥3) - a point of an elastic body. 

If in a system (1) stresses and strains are replaced by expressions 
from (2), then we obtain a system of equations of equilibrium in 
displacements: 

∆𝑢𝑘 + 𝜃,𝑘/(1 − 2𝜈) + 𝑙𝑘(𝑢) + 𝑔𝑘(𝑢) + 𝑋𝑘/𝜇 = 0, 𝑘 = 1,2,3,                       

                                                                                                   (3)         

where              𝑙𝑘(𝑢) = �𝜇,𝑘𝑒𝑘𝑘 + 𝜇,𝑗𝑒𝑘𝑗 + 𝜆,𝑘(𝑒11 + 𝑒22 + 𝑒33)�/
𝜇, 

𝑔𝑘(𝑢) = 1
𝜇
�𝑓𝑘(𝑢) + 𝜕

𝜕𝑥𝑘
[(𝜇 + 𝜆)(æ11 + æ22 + æ33)] +

𝜕
𝜕𝑥𝑗

�𝜇æ𝑗𝑘��,                                                                                (4) 

𝜃 = 𝑑𝑖𝑣 𝑢,  ∆ - Laplace operator. 

It is noteworthy that in the case of linear problems 𝑔𝑘(𝑢) ≡
0,𝑘 = 1,2,3.  

In addition, if the body is homogeneous, then 𝑙𝑘(𝑢) ≡ 0,𝑘 =
1,2,3. 

Задача А. It is required to find the solution 𝑢 = (𝑢1,𝑢2,𝑢3) for a  
system (3) in a hemisphere 𝑉: 𝑥12 + 𝑥22 + 𝑥32 ≤ 𝑅2 (𝑥3 ≥ 0) 
satisfying a condition 𝜕𝑉 on its boundary 

                                                   𝑢 = 0.                                                                 

                                                                                                     (5)  
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We will study Problem А in a generalized formulation.  Let the 
following conditions be satisfied: 𝑎) 𝐸(𝑥), 𝜈(𝑥) ∈ 𝑊𝑝

(1)(𝑉), 𝑝 >
3;   𝑏)𝑋𝑘 ∈ 𝐿𝑝(𝑉),𝑝 > 3, 𝑘 = 1,2,3.  

Here is 𝑊𝑝
(𝑗)(𝑉)(𝑗 = 1,2) Sobolev space. By virtue of embedding 

theorems, there is a generalized solution 𝑢 ∈ 𝐶𝛼1�𝑉�, а 𝐸(𝑥),
𝜈(𝑥) ∈ 𝐶𝛼�𝑉�,𝛼 = (𝑝 − 3)/𝑝  for Sobolev spaces 𝑊𝑝

(𝑗)(𝑉) с 
𝑝 > 3. 

Definition. We will name a generalized solution to Problem A the displacement vector.𝑢 =
(𝑢1,𝑢2,𝑢3) ∈ 𝑊𝑝

(2)(𝑉), 𝑝 > 3,  almost everywhere (a.e.), there is 
(3) satisfying the system  and a boundary condition (5). 

The solution to problem A will be sought in the form 

                𝑢(𝑥) = ∭𝑉 𝐺(𝑦, 𝑥)𝜌(𝑦)𝑑𝑦,     𝑑𝑦 = 𝑑𝑦1𝑑𝑦2𝑑𝑦3,    

                                                                                                   (6)                      

where 𝜌 = (𝜌1,𝜌2,𝜌3) - an arbitrary vector function belonging to 
space 𝐿𝑝(𝑉), 𝑝 > 3; 𝐺(𝑦, 𝑥) - harmonic Green’s function of the 
Dirichlet problem, which in the case of hemisphere V has the 
form (Mikhlin, 1962). 

𝐺(𝑦, 𝑥) =
1

4𝜋|𝑦 − 𝑥| −
𝑅

4𝜋|𝑦||𝑦∗ − 𝑥| −
1

4𝜋 �𝑦 − 𝑥�

+
𝑅

4𝜋|𝑦| �𝑦∗ − 𝑥�
, 

𝑦∗ = (𝑦1∗,𝑦2∗,𝑦3∗) = 𝑅2𝑦/|𝑦|2 - a point symmetric to a point 
𝑦 = (𝑦1, 𝑦2,𝑦3) ∈ 𝑉 with respect to a sphere 𝑥12 + 𝑥22 + 𝑥32 = 𝑅2; 
𝑦 = (𝑦1, 𝑦2,−𝑦3) and 𝑦∗ = (𝑦1∗,𝑦2∗,−𝑦3∗) - points symmetric to 
points 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑉 and 𝑦∗ = (𝑦1∗, 𝑦2∗,𝑦3∗) ∈ 𝑉1: 𝑥12 + 𝑥22 +
𝑥32 ≥ 𝑅2 , 𝑥3 ≥ 0 with respect to a surface 𝑥3 = 0; 𝑦 =
(𝑦1,𝑦2,−𝑦3) ∈ 𝑉2: 𝑥12 + 𝑥22 + 𝑥32 ≤ 𝑅2, 𝑥3 ≤ 0;𝑦∗ =
(𝑦1∗,𝑦2∗,−𝑦3∗) ∈ 𝑉3: 𝑥12 + 𝑥22 + 𝑥32 ≥ 𝑅2, 𝑥3 ≤ 0;  |𝑦 − 𝑥| =
�(𝑦1 − 𝑥1)2 + (𝑦2 − 𝑥2)2 + (𝑦3 − 𝑥3)2. 

We will find derivatives up to the second order inclusive of the 
function 𝑢(𝑥). By direct differentiation under the integral sign in 
(6), we derive 

𝜕𝑢
𝜕𝑥𝑗

≡ 𝑢,𝑗(𝑥) = ∭𝑉
𝜕𝐺(𝑦,𝑥)
𝜕𝑥𝑗

𝜌(𝑦)𝑑𝑦 ≡ 𝑢,𝑗(𝜌)(𝑥), 𝑗 = 1,2,3.       

                                                                                                     (7)                       

We note that 𝑢,𝑗 are linear completely continuous operators from 
𝐿𝑝(𝑉) в 𝐶𝛼�𝑉� when 𝑝 > 3. In order to find the second 
derivatives 𝑢(𝑥), we will use the formula (15) from (Novozhilov, 
1948). As a result, a.e. in 𝑉 we get a notion 

𝑢𝑘,𝑘𝑗(𝜌𝑘)(𝑥) = −1
3
𝛿𝑘𝑗𝜌𝑘(𝑥) + 1

4𝜋
∭𝐸3

𝑓𝑘𝑗�
𝑦−𝑥

|𝑦−𝑥|�

|𝑦−𝑥|3
𝜌𝑘∗(𝑦)𝑑𝑦, 𝑗, 𝑘 =

1,2,3,                                                                                           (8) 

𝑓𝑘𝑗 �
𝑦 − 𝑥

|𝑦 − 𝑥|� =
3(𝑦𝑘 − 𝑥𝑘)�𝑦𝑗 − 𝑥𝑗� − 𝛿𝑘𝑗|𝑦 − 𝑥|2

|𝑦 − 𝑥|2 , 

where 𝜌𝑘∗(𝑦) = 𝜌𝑘(𝑦) when 𝑦 ∈ 𝑉, 𝜌𝑘∗(𝑦) = −� 𝑅5

|𝑦|5
� 𝜌𝑘 �

𝑅2

|𝑦|2
𝑦� 

when 𝑦 ∈ 𝑉1, 𝜌𝑘∗(𝑦) = −𝜌𝑘 �𝑦� when 𝑦 ∈ 𝑉2, 𝜌𝑘∗(𝑦) =

� 𝑅5

|𝑦|5
� 𝜌𝑘 �

𝑅2

|𝑦|2
𝑦� when 𝑦 ∈ 𝑉3; 𝐸3 - three-dimensional Euclidean 

space; 𝛿𝑘𝑗 = 1 when 𝑘 = 𝑗 и 𝛿𝑘𝑗 = 0 when 𝑘 ≠ 𝑗. 

It should be noted that the function 𝑓𝑘𝑗 �
𝑦−𝑥

|𝑦−𝑥|
� is a characteristic 

of a singular operator 𝑢𝑘,𝑘𝑗 (Timergalyev et al 2014). Having 

designated 𝜃 = (𝑦 − 𝑥)/|𝑦 − 𝑥| = (𝜃1, 𝜃2,𝜃3), 𝜃𝑗 = (𝑦𝑗 −
𝑥𝑗)/|𝑦 − 𝑥|, 𝑗 = 1,2,3,  the characteristic can be expressed as 
𝑓𝑘𝑗(𝜃) = 3𝜃𝑘𝜃𝑗 − 𝛿𝑘𝑗 ,𝑘, 𝑗 = 1,2,3. Direct calculations show that 

∬𝑆1
𝑓𝑘𝑗(𝜃)𝑑𝑠 = 0; furthermore, it is evident 

that∬𝑆1
�𝑓𝑘𝑗(𝜃)�𝑞𝑑𝑠 ≤ 𝑐𝑜𝑛𝑠𝑡, 𝑘, 𝑗 = 1,2,3, 1/𝑝 + 1/𝑞 = 1, 𝑝 >

3, 𝑆1 - a singular sphere. Therefore  (Timergalyev et al 2014), 
 𝑢𝑘,𝑘𝑗 the essence of bounded operators is in 𝐿𝑝(𝑉), 𝑝 > 3. 

Relations (6), (7), (8) are introduced in (3).  As a result, in order 
to determine the function 𝜌 = (𝜌1, 𝜌2,𝜌3) we arrive at a system of 
three-dimensional nonlinear singular integral equations of form 

𝜌𝑘(𝑥) −
𝛽(𝑥)
4𝜋

∭𝐸3

𝑓𝑘𝑗(𝜃)
|𝑦 − 𝑥|3 𝜌𝑗

∗(𝑦)𝑑𝑦 − 𝑙𝑘(𝜌)

= 𝑔𝑘(𝜌) + 𝐹𝑘(𝑥), 𝑥 ∈ 𝑉,            

                                                                                                     (9) 

𝐹𝑘(𝑥) =
3(1 − 2𝜈)(1 + 𝜈)

(2 − 3𝜈)𝐸
𝑋𝑘(𝑥), 𝑙𝑘(𝜌) ≡ 𝑙𝑘�𝑢(𝜌)�,𝑔𝑘(𝜌)

≡ 𝑔𝑘�𝑢(𝜌)�,  

𝛽(𝑥) =
3

4 − 6𝜈
, 𝑘 = 1,2,3.  

Based on relations (4) and given above set operator properties 𝑢,𝑗 , 
𝑢𝑘,𝑘𝑗 , 𝑗, 𝑘 = 1,2,3,  and conditions 𝑎), 𝑏), we easily establish that 
𝑙𝑘 - inear completely continuous, 𝑔𝑘 - non-linear bounded 
operators in 𝐿𝑝(𝑉); 𝐹𝑘(𝑥) ∈ 𝐿𝑝(𝑉), 𝑝 > 3,𝑘 = 1,2,3.  

We will follow (Krasnoselsky, 1956) when studying the 
solvability of a system (9), in which the right-hand side is 
temporarily considered fixed. The study of the solvability of 
multidimensional singular integral equations is based on the 
calculation of the symbol of singular operators. We will define a 
singular operator symbol with Ф𝑘𝑗(𝑥, 𝜃). 

𝐴𝑘𝑗𝜌𝑗 = 𝛿𝑘𝑗𝜌𝑗 −
𝛽(𝑥)
4𝜋

∭𝐸3

𝑓𝑘𝑗(𝜃)
|𝑦 − 𝑥|3 𝜌𝑗

∗(𝑦)𝑑𝑦 − 𝛿𝑘𝑗𝑙𝑗(𝜌), 𝑥

∈ 𝑉, 𝑗, 𝑘 = 1,2,3 

(there is no summation with  𝑗). 

We will calculate Ф𝑘𝑗(𝜃). We will be using a formula 
(Timergalyev et al 2014): 

            Ф𝑘𝑗(𝑥,𝜃) = 𝛿𝑘𝑗 −
𝛽(𝑥)
4𝜋

∭𝐸3
𝑓𝑘𝑗(𝑦/|𝑦|)

|𝑦|3
𝑒−𝑖(𝑦,𝑧)𝑑𝑦,                                           

                                                                                                  (10)                                                                                                       

where  𝜃 = 𝑧/|𝑧|, 𝑧 = (𝑧1, 𝑧2, 𝑧3), (𝑦, 𝑧) = 𝑦1𝑧1 + 𝑦2𝑧2 + 𝑦3𝑧3 =
|𝑦||𝑧| 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛾  - scalar product of vectors 𝑦, 𝑧; 𝛾 - an angle 
between 𝑦, 𝑧; 𝑖 - an imaginary unit. 

By calculating the integrals in (10), we derive Ф𝑘𝑗(𝜃) the 
relations for symbols Ф𝑘𝑗(𝜃) 

Ф𝑗𝑗(𝑥,𝜃) = 𝛽�1 − 2𝜈 + 𝜃𝑗2�,Ф𝑗𝑘(𝑥, 𝜃) = 𝛽𝜃𝑗𝜃𝑘 , 𝑗 ≠ 𝑘, 𝜃𝑗 =
𝑧𝑗
|𝑧|

, 𝑗, 𝑘 = 1,2,3. 
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Based on the theorem 3.40 from (Novozhilov, 1948), we derive 

∆1= Ф11(𝑥, 𝜃) = 𝛽(1 − 2𝜈 + 𝜃12),  ∆2= 𝑑𝑒𝑡�Ф𝑗𝑘�2×2
= 

= 𝛽2[(1 − 2𝜈)2 + (1 − 2𝜈)(𝜃12 + 𝜃22)], 

                     ∆3= 𝑑𝑒𝑡�Ф𝑗𝑘�3×3
= 2𝛽3(1 − 2𝜈)2(1 − 𝜈).   

                                                                                                (11)                                                         

Let a Poisson's ratio 𝜈 = 𝜈(𝑥) satisfy the condition 

                 −1 < 𝜈(𝑥) ≤ 𝜈0 < 1/2  ∀𝑥 ∈ 𝑉, 𝜈0 = 𝑐𝑜𝑛𝑠𝑡.   

                                                                                               (12)                         

Based on (11), we easily obtain 

|∆1| > 0,3(1 − 2𝜈0), |∆2| > [0,3(1 − 2𝜈0)]2, |∆3|
> 2(1 − 𝜈0)(0,3)3(1 − 2𝜈0)2 

∀𝑥 ∈ 𝑉,  ∀𝜃 ∈ 𝑆1, 

which suggests that the exact lower bounds of the determinants 
moduli ∆j are positive. Therefore (Novozhilov, 1948), the system 
index (9) is zero with the Fredholm alternative applicable to it. 
Let 𝜌 = (𝜌1,𝜌2,𝜌3)  ∈ 𝐿𝑝(𝑉), 𝑝 > 3 - A non-trivial solution of 
the system (9) with a zero right-hand side: 𝑔𝑘(𝜌) + 𝐹𝑘(𝑥) ≡
0,𝑘 = 1,2,3. This solution by the formula (6) corresponds to the 
displacement vector𝑢 = (𝑢1,𝑢2,𝑢3) ∈ 𝑊𝑝

(2)(𝑉),𝑝 > 3 that 
satisfies the boundary condition (5) and a.e. a system of 
homogeneous linear equations  

                                           𝜎𝑒,𝑗
𝑘𝑗 = 0, 𝑘 = 1,2,3,      

                                                                                                (13)                                           

where 𝜎𝑒
𝑗𝑗 = 2𝜇𝑒𝑗𝑗 + 𝜆(𝑒11 + 𝑒22 + 𝑒33),𝜎𝑒

𝑗𝑘 = 𝜇𝑒𝑗𝑘 , 𝑗 ≠
𝑘, 𝑗, 𝑘 = 1,2,3. 

Equations in (13) are respectively multiplied by u1, u2, u3, 
integrated by V and summed. Then, taking into account (5), we do 
integration by parts. Finally, we obtain 

∭𝑉 {(1 − 2𝜈)[(𝜎𝑒11)2 + (𝜎𝑒22)2 + (𝜎𝑒33)2] + 2(1
+ 𝜈)[(𝜎𝑒12)2 + (𝜎𝑒22)2 + (𝜎𝑒13)2]}𝑑𝑉 = 0, 

which suggests 𝑒𝑗𝑘 = 0,𝑘 = 1,2,3, and, therefore, 𝑢𝑘 = 0,𝑘 =
1,2,3. So 𝜌 = 0 a.e. in 𝑉. 

Thus, there is an inverse operator (𝐼 − 𝑃)−1 bounded in 
𝐿𝑝(𝑉),𝑝 > 3, with the help of which (9) reduces to an equivalent 
system of the form 

                                               𝜌 − 𝐺𝜌 = 0,    

                                                                                               (14)                                                    

where notations are accepted: 𝐺𝜌 =  (𝐼 − 𝑃)−1(𝑔(𝜌) + 𝐹), 
𝑃𝜌 = (𝑃1𝜌,𝑃2𝜌,𝑃3𝜌), 𝐹 = (𝐹1,𝐹2,𝐹3),  
𝑔(𝜌) = �𝑔1(𝜌),𝑔2(𝜌),𝑔3(𝜌)�,  

𝑃𝑘𝜌 =
𝛽

4𝜋
∭𝐸3

𝑓𝑘𝑗(𝜃)
|𝑦 − 𝑥|3 𝜌𝑗

∗(𝑦)𝑑𝑦 + 𝑙𝑘(𝜌),𝜃 =
𝑦 − 𝑥

|𝑦 − 𝑥| ,𝑘

= 1,2,3. 

Exists  

Lemma. Let the conditions (𝑎), (𝑏), inequality (12) be satisfied. 
Then 𝐺 is a nonlinear bounded operator in 𝐿𝑝(𝑉), 𝑝 > 3, besides, 

for any 𝜌𝑗(𝑗 = 1,2) ∈  𝐿𝑝(𝑉),𝑝 > 3 belonging to the ball 
‖𝜌𝑗‖𝐿𝑝(𝑉) < 𝑟, the following evaluation is fair ‖𝐺(𝜌1) −
𝐺(𝜌2)‖𝐿𝑝(𝑉) ≤ (𝑞1 + 𝑞2𝑟)𝑟‖𝜌1 − 𝜌2‖𝐿𝑝(𝑉), where 𝑞𝑗 (𝑗 = 1,2) - 
known constants that are not dependent on 𝑟. 

Let us assume that the ball radius and the external forces acting on 
the elastic body are such that the conditions are satisfied 

𝑞 = (𝑞1 + 𝑞2𝑟)𝑟 < 1, ‖𝐺(0)‖𝐿𝑝(𝑉) < (1 − 𝑞)𝑟,𝐺(0) =
(𝐼 − 𝑃)−1𝐹.                                                                                                              
(15)   

Under these conditions (14) we can apply a contraction mapping 
principle [7, p.146], according to which the equation (14) in the 
ball ‖𝜌‖𝐿𝑝(𝑉) <  𝑟 has the only possible solution 𝜌 ∈ 𝐿𝑝(𝑉), 𝑝 >
3.  

Knowing that 𝜌 = (𝜌1,𝜌2,𝜌3), from the formula (6), we find the 
solution  𝑢 = (𝑢1,𝑢2,𝑢3) ∈ 𝑊𝑝

(2)(𝑉), 𝑝 > 3 of Problem А. 

Thus, the following theorem has been proved. 

The theorem. Let conditions a, (b) of inequality (12), (15) be 
satisfied. Then the nonlinear boundary-value problem for an 
elastic isotropic inhomogeneous hemisphere under kinematic 
boundary conditions has a unique generalized solution in some 
ball of space 𝑊𝑝

(2)(𝑉),𝑝 > 3. 

4 Summary 

The solvability of spatial boundary value problems of the 
elasticity theory is very relevant and is being carried out in two 
main directions. The first direction is characterized by the use of 
functional analysis methods (the Hilbert space method, variational 
methods, implicit function theorems), which allow us to study the 
existence of generalized solutions to a wide range of problems in 
the theory of elasticity in various energy spaces. The second 
direction is based on the theory of singular integral equations, 
which is based on fundamental solutions of equilibrium equations. 
Currently, such fundamental solutions are constructed for 
equations with constant and piecewise-constant coefficients that 
describe the equilibrium state of isotropic homogeneous and 
piecewise-homogeneous elastic bodies. The research proposal of 
this academic paper which concerns three-dimensional problems 
is developed in the second direction (Pakdel & Talebbeydokhti, 
2018: Deyhim & Zeraatkish, 2016).  

5 Conclusions 

We have proved the existence theorem and have developed the 
analytical method for finding solutions of geometrically nonlinear 
spatial boundary value problems for an elastic isotropic 
inhomogeneous hemisphere under kinematic boundary conditions. 
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