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Abstract: Sufficient stability conditions are obtained in the form of inequalities 

connecting the system coefficients (parameters)  and the condition for the accuracy of 

its functioning. Functioning accuracy is understood as the requirement that the 

deviations of some system state variables from their calculated values remain within 

predetermined limits. The results obtained in the article allow us to study the stability 

and accuracy of the functioning of various complex engineering objects with distributed 

and concentrated parameters. As an example, the stability of a rotor-type wind turbine 

with a load (generator, pump, etc.) and the elasticity of the shaft transmitting the torque 

from the wind turbine to the load are considered.  The use of environmentally friendly 

wind turbines to reduce energy costs is a promising area.  
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1 Introduction 

One of the main methods for studying the system's stability with 

distributed parameters is the method of Lyapunov functions 

(functionals). At the same time, along with purely distributed 

systems, systems with distributed and concentrated parameters 

were also considered. A fairly complete review and problem 

status in this area can be found in (Sirazetdinov, 1987; Wang, 

1968; Wang, 1966; Bayramov, 1995). Along with theoretical 

studies using the Lyapunov function method, studies of specific 

objects with distributed parameters are carried out. For example, 

elastic and aeroelastic objects (Bayramov, 1995; Parks, 1967; 

Wang, 1966; Meirovitch, 1970), chemical reactors liquid rocket 

engines (Sirazetdinov, 1987; Bayramov, 1995). In applications, 

the main difficulty is the construction of the corresponding 

Lyapunov functionals, which, when studying concrete objects, 

were usually constructed intuitively based on the total energy, the 

first integrals, and other considerations. In solving systems 

stability with distributed parameters problems, it was proposed in 

(Bayramov, 1995 ; Bairamov et al., 2016), that the initial 

equations in partial derivatives of high order be preliminarily 

reduced to a system of first-order equations concerning time and 

spatial coordinates. Further, for this system, Lyapunov functionals 

are constructed according to specific equations in the form of 

integral quadratic forms, which sign-definiteness can be checked 

using the well-known Sylvester criterion. Such an approach 

allows the constructive construction of Lyapunov functionals and 

significantly expands the possibilities of using the Lyapunov 

function method in specific applications. 

Technical conditions for the system functioning along with 

stability often require that the one or more state variables 

deviations from their calculated values remain within specified 

limits (accuracy of operation). Moreover, deviations of other 

variables are not strictly controlled. For example, in hydraulic 

systems, it is important to control the fluid flow rate supplied to 

the consumer, in pneumatic systems - pressure. 

In this paper, the idea of transforming the original high-order 

equations into a system of first-order equations is used to study 

the stability and the systems functioning accuracy with distributed 

and concentrated parameters.  

2 Methods 

The work uses universally recognized mathematically rigorous 

and accurate research methods. The main ones are methods for 

converting high-order differential equations into a system of first-

order equations and the Lyapunov function method. 

When calculating the derivative of the Lyapunov function (2.1) by 

equations (1.1) – (1.3), the modified Lagrange multiplier method 

is used to take into account equations without derivatives. 

The conditions of stability and accuracy of operation are written 

based on well-known classical results from the theory of stability 

of finite-dimensional and distributed systems. The sign-

definiteness check of ordinary and integral quadratic forms is 

carried out according to the Sylvester criterion. 

3 Results And Discussion 

1. Statement of the problem. We consider a system with one 

distributed and other finite-dimensional links, the disturbed state 

of which is described by the equations 

       

       

0 0

0 0

,

0,

A x B x A x B x
t x x

C x D x C x D x
x x

  
 

 
 

  
   

  

 
   

                           

                                                                                                (1.1)   

 ,1,0x  

   1 2 30, 1, ,
dz

F z F t F t
dt

   
                                     (1.2) 

   1 2 3 40, , 1, ,Г t Г z Г t Г z  
                                                                       

 0, ,t I  
                                                           (1.3) 

where 
 ,x t 

 – n  is a dimensional vector of state 

variables of a distributed link, 
 tx, 

 – l  is a 

dimensional vector of state variables of this link, the time 

derivatives of which are not included in system (1.1), 
 tzz 

 

– m  is a dimensional vector of state variables of finite-

dimensional links, 
 xA

,  xB , 
 xC

, 
 xD , 

 0A x
, 

 0B x
, 

 0C x
, 

 0D x
 are matrices whose elements are 

limited continuous functions, 1F
, 2F

, 3F
, 1Г , 2Г , 3Г , 

4Г  are constant matrices. 

From a mathematical point of view, problem (1.1) – (1.3) is a 

boundary value problem for partial differential equations. 

Equations (1.1) are the general form for writing any linear partial 

differential equation of arbitrary order in the form of a system of 

partial differential equations of the first order [4, 8]. To convert 

high-order equations to the form (1.1), we must take the lower 

derivatives as additional variables and write the initial equation 

and integrability condition in these variables. 

Equations (1.3) are simple boundary conditions connecting the 

boundary values of the 
 ,x t

 components with each other or 

with the variable z . The dynamic equation (1.2) of finite-

dimensional units located at both ends of the distributed unit 

contains the boundary values 
 ,x t

 and represents a complex 

boundary condition in the form of a differential equation. 

Equations of the type (1.1) – (1.3) describe systems having elastic 

shafts of considerable length, for example, between the engine 
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and the working machine (generator, pump, compressor, etc.); 

systems containing pipelines (highways) in which it is necessary 

to take into account the flow of liquid or gas distributed nature, 

etc. 

We introduce the metric 

1

0

Т dx   
                                                               (1.4) 

characterizing the distributed link perturbed state, and consider 

the system stability and accuracy functioning problem (1.1) – 

(1.3). 

The task. It is required to find conditions under which system 

(1.1) – (1.3) is asymptotically stable concerning the variables 


, 

z , and any its solution with initial data from the domain 

   0 00 0, 0 , 1,i it H z H i m   
      (1.5) 

satisfies the condition 

   
 1 1, 0,z t H t 

                                      (1.6) 

where 
   0 1 1 010, ,iH i m H H H 

 are the given positive 

numbers. 

Here, for definiteness, the deviations of only one variable 1z are 

controled. 

1. The solution to the problem. To solve the problem we use the 

Lyapunov function 

 

         
1

1 2

0

, , ,Т TV V V x t v x x t dx z t Q z t    
                                                                         (2.1) 

where 
 v x

, 
Q

 are symmetric matrices: the elements 
Q

 are 

constant, and the elements 
 xv

 are continuously differentiable 

bounded functions. 

The second equation (1.1) and equations (1.3) do not contain time 

t   derivatives. This does not allow directly to calculate the 

derivative V  due to the whole system. First, we calculate the 

derivative 
dtdV

 by the first equation (1.1) and equation (1.2): 

 

 
1

0 0

0

T T
T T T T TdV

v A B A B v vA A v
dt x x x x

   
   

     
               


 

   0 0 1 1 22 0,T T T T T T TvB B v dx z QF F Q z t F Q z           

     3 4 52 1, 2 0, 2 1, .T T T T T Tt F Q z t F Q z t F Q z    
    (1.7)

Using the modified Lagrange multiplier method, to take into 

account the second equation (1.1) and equations (1.3), we add to 

this derivative 

 

 
1

1 2 0 0

0

T TP P C D C D
x x

 
   

           


 0 0 1 2 0,
T T

T T T T T T T TC D C D P P dx
x x

 
   

  
              (1.8)

  

     1 2 1 2 1 20, 0, 0,T T T T T Tt R z R Г t Г z t Г z Г                1 20, 0,T TR t R z      

     3 4 3 4 3 41, 1, 1,T T T T T Tt R z R Г t Г z t Г z Г                3 41, 0,T TR t R z      

                                                                                                                                                                                                   (1.9)

where 
 1 1P P x

, 
 2 2P P x

, 1R
, 2R

, 3R
, 4R

 are while 

arbitrary matrices: 1P
, 2P

 are continuous, 1R
, 2R

, 3R
, 4R

 

are constant. The brackets 
 1 2

T TP P 
, 
 1 2

T TP P 
, 

  1 20, ,T Tt R z R    
 1 20,T TR t R z    play the role of 

Lagrange multipliers. 

We perform integration by parts and require that the matrices v , 

1P
, 2P

, 
Q

, 1R
, 2R

, 3R
, 4R

 satisfy the equations 

1 1 2 2, ,T T T T TvA PC A v C P P D D P   
 

                                                                                        (2.2) 

2
1 2 2 0 0 2, ,T T T T dP D

vB PD C P P D D P
dx

   
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 
 1

0 1 0 0 2 , 0,1 .T T d vB PD
vB PD C P x

dx


   

       (2.3)

  

and boundary conditions at 0x  and 1x : 

       1 1 1 1 10 0 0 0 0,T Tv A P C R Г Г R   
 

2 2 1 2 1 0,T TQF R Г Г R  
 

       1 3 3 3 31 1 1 1 0,T Tv A P C R Г Г R   
 

3 4 3 4 3 0,T TQF R Г Г R  
 

   2 1

1 1
0.

0 0
P D vB PD  

                                      (2.4) 

Then, for the derivative 
dtdV

, by system (1.1) – (1.3), we 

obtain the expression 

1

0

,T TdV
w dx z H z

dt
   

                                      (2.5) 

those a quadratic form of the same form as for V  (2.1). Here 

 1

0 0 1 0 0 1 ,T T Td vA PC
w vA A v PC C P

dx


    

       (2.6) 

 

 1 1 2 2 2 2 4 4 4 4 .T T T T TH QF F Q R Г Г R R Г Г R      

                                                                       (2.7) 

The results obtained allow us to solve the problem of constructing 

the quadratic form V  (2.1). To do this, one should set the 

symmetric matrix 
 xw

 and solve equations (2.2), (2.5) 

concerning the matrices v , 1P
, 2P

 under the boundary 

conditions arising from equations (2.3). However, unlike the 

problem of constructing quadratic forms in the case of linear 

ordinary differential equations, here not always all elements of the 

matrix w  can be given arbitrarily, some of them are determined 

in the course of solving the problem. From equations (2.3) we 

also find the matrices 
Q

, 1R
, 2R

, 3R
, 4R

. 

According to the method of Lyapunov functions, the solution to 

the problem will be the conditions: 

a) the integral quadratic form 1V
 (2.1) is continuous and 

definitely positive in the metric  ; 

b) the usual quadratic form 2V
 (2.1) is definitely 

positive;  

c) the derivative (2.4) is definitely negative concerning 

the variables 


, z ; 

d) there is an inequality 

       1 2 ,c c
                                                        (2.8) 

where 

1 00 0sup , , 1, , 0 ,i ic V H z H i m t     
         (2.9)                                                                                                      

2 1 1inf , , 2, , , .ic V z H z i m t I      
         (2.10) 

Indeed, conditions a), b), c) are sufficient for the asymptotic 

stability of system (1.1) – (1.3) (Sirazetdinov, 1987), and the 

fulfillment of estimate (1.5) follows from inequalities 

    1 20V t V c c  
, which, according to conditions a), b), c), 

d) take place on any system solution  (1.1) – (1.3) starting from 

region (1.4). But if 2V c
, then, by the constant 2c

 definition, 

(1.5) holds. 

Let the matrix 
 v x

 be definitely positive for any  0,1x
. 

Then the quadratic form 1V
, taking into account the boundedness 

of the elements of the matrix 
 v x

, satisfies the conditions 

1 1 2 1 2, , 0,V const        
     (2.11) 

where 1 , 2  are numbers that limit the characteristic numbers 

of the matrix 
 v x

 from below and above, respectively. 

Suppose that the matrix 
Q

 is also definitely positive. Then the 

quadratic form  2V  satisfies the inequalities (Bayramov, 1995) 

2

2

, 1

, 1, ,
m

i
ij i j

i ji

z
V q z z i m




  




                      (2.12) 

where ijq
 – elements of matrix 

Q
, 

detQ 
, i  – addition 

to i - that diagonal element  . 

In accordance with (2.8) – (2.11) for the numbers 1c , 2c
 we 

take 

2

1
1 2 00 0 0 2

, 1 1

, .
m

ij i j

i j

H
c H q H H c




  




 

                                                                                     (2.13) 

Condition (213) is written: 

2

1
2 00 0 0

, 1 1

.
m

ij i j

i j

H
H q H H




 




                      (2.14) 

Thus, conditions a), b), c), d) will be satisfied if Q , H  are 

definitely positive, and the matrices 
 xv

,  xw  are definitely 

positive with  0,1x , i.e. 

 

     0, 0; 0, 0, 0,1 ,Q H v x w x x    

                                                                      (2.15) 

and there is an inequality (2.15). 

2. Example. Consider the stability of the rotor type wind turbine 

with a vertical axis of rotation together with the load (generator, 

pump, etc.). The shaft transmitting the torque of the wind turbine 

to the load has a considerable length, so the problem is solved 
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taking into account the elasticity of this shaft (Bairamov & 

Mardamshin, 2008). 

The equations of the dynamics of a wind turbine with a load and 

an elastic gear shaft in relative deviations from the nominal 

operating mode have the form (Bairamov et al., 2009). 

 
0

,
,

x

x tdz
kz

dt x






 


 

   
 

2 2

2 2

, ,
, 0,1 ,

x t x t
a x

t x

  
 

    

     
1 2

1 1 0

, , ,
, .

x x x

x t x t x t
k k z

x t t

  

  

  
  

  
                  (3.1) 

Here 

y
x 

, 

z
 









, 

 
   

max

, ,
,

x t x t
x t

 








, 

max

M

GI





l

, 
2

GI
a

J


l , 

1

W

M
k

J  

 
  

  , 
1

PM
k

GI  

 
  

 

l

, 

2

GI
k

M






l , 

y
 are the coordinates of the cross-sections of the 

transmission shaft,   is the angular speed of the wind turbine,  

 ,x t
,  , J , GI  is the absolute angle of rotation of the 

sections, length, running moment torsional rigidity of the 

transmission shaft, M , PM  – torques of the wind turbine and 

pump, WJ
 – moment of inertia of the wind turbine, max

 – 

maximum angle of rotation of the transmission shaft in the 

nominal mode, the sign ( ) indicates the values of the values in 

the nominal operating mode of the unit, when 
const  ,  

PM M M const  
 and the transmission shaft and has a 

constant static deformation of 
x M GI    

. 

Introducing the new variables 1 t   
, 2 x   

 and 

taking into account the integrability condition 

2 1t x     
, we write equations (3.1) in the form of 

system (1.1) – (1.3), where 

1 2 1 2 2 3 1

0
, , 0 1 , 1 0 , , 1 ,

1 0

a
A F k F Г Г k Г k     

(3.2) 

and the matrices 0A
, B , 0B

, C , 0C
, D , 0D

, 3F
, 4Г  are 

zero. 

We construct functional (2.1), wherein this example we take 
2

2V qz
, 

0 constq
. We write equation (2.2) and (2.5) in 

a scalar form. Given that in this case 1 2 0P P 
, we get 

 22 11,v av
                                                  (3.3)  

12 12 11
11 22 12, , ,

dv dv dv
w a w a w

dx dx dx
  

       (3.4) 

where 
ijv

, 
ijw

 are elements of matrices v , w . 

Equations (2.3) imply the following boundary conditions for 

0x  and 1x : 

 11 0 ,q av
 

       2

12 1 12 1 110 0, 1 1 2 1 .v ak v ak v  
       (3.5) 

Put 11 1w 
, 22w a

, 12 0w  . 

Solving equations (3.2) under the boundary conditions (3.5), we 

obtain 

 2

1

11 12

1

1
, ,

2

ak
v v x

ak


 

                                                  (3.6) 

and from equation (2.6) we find 2H qk . 

The functional V  (2.1) and its derivative 
dtdV

 (2.4), by 

system (3.1), can be written in the form: 

 
1 2

2 21
1 2 1 2

10

1
2 ,

2

ak
V a x dx

ak
  

 
   

 


 

 
 21

12 2 2

1 2

10

1
.

k akdV
a dx z

dt k
 


   

                           (3.7) 

Since 2 0k 
, from inequalities (2.13) we find the conditions for 

the asymptotic stability of the wind turbine, taking into account 

the elasticity of the transmission shaft and the expression for k  in 

the form: 

1

1
0, 0 .

M
k

a 

 
   

                                              (3.8) 

Comparing these conditions with the stability condition 

0PM M

  

    
    

      for a wind turbine with a rigid gear shaft, we 

see that the elasticity of the shaft narrows the stability region. 

4 Summary 

 Equations are developed for constructing Lyapunov 

functions in the form of a sum of ordinary and integral 

quadratic forms. 

 The stability conditions for systems with distributed and 

concentrated parameters in the form of inequalities 

connecting the coefficients of the system and the condition 

for the accuracy of its operation are obtained, under which 

the deviations of some of the main state variables of the 

system from their calculated values remain within 

predetermined limits. 

 The work has theoretical and practical value. The results can 

be used in the design and study of various complex 

engineering objects with distributed and concentrated 

parameters. 

5 Conclusion 

Using the Lyapunov function method, we study the stability and 

accuracy of the functioning of systems with distributed and 

concentrated parameters described by linear differential equations 

in partial and ordinary derivatives. The proposed approach is 

related to the idea of transforming high-order equations into a 

system of first-order equations in time and spatial coordinates and 

constructing Lyapunov functions for them in the form of a sum of 

ordinary and integral quadratic forms. Such an approach allows 

constructing Lyapunov functions constructively using specific 

equations and developing a universal methodology for studying 
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the stability and accuracy of various systems with distributed and 

concentrated parameters. 
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