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Abstract: In this paper, we consider the two-dimensional Hirota-Maxwell-Bloch 
equation. Lax pairs are presented for this equation, conservation laws are obtained for 
the two-dimensional Hirota-Maxwell-Bloch equations. 
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1 Introduction 
 
Modern nonlinear science as a powerful subject explains all 
kinds of secrets in the problems of modern technology and 
science. The non-linear nature of real systems is considered 
fundamental to understanding most natural phenomena. 
Integrable systems are the main part of the theory of modern 
nonlinear science. One of the interesting integrable systems is 
the so-called one-dimensional Hirota-Maxwell-Bloch equations 
(HMBE). They describe the nonlinear dynamics of the 
propagation of a femtosecond pulse through a doped fiber. In 
this article, we will consider one of the two-dimensional 
integrable generalizations of one-dimensional HMBE, namely, 
two-dimensional HMBE. We note that many nonlinear partial 
differential equations (PDEs) admit an infinite number of 
conservation laws. Although most do not have a physical 
interpretation, these conservation laws play an important role in 
creating the complete integrability of PDEs. 
 
2 Materials and Methods 
 
The nonlinear Schrödinger equation is widely used in various 
fields of physics, for example, in nonlinear optics, plasma 
physics, superconductivity theory, and low-temperature physics. 
The structure of (1+1)-dimensional nonlinear Schrödinger 
equations is now very well studied. However, much is still not 
known about the properties of multidimensional nonlinear 
evolution equations. 
 
Nonlinear equations have been the subject of research in various 
fields of nonlinear sciences. Nonlinear equations are often used 
to describe many problems in physics (heat flux and wave 
propagation phenomena), protein chemistry, quantum 
mechanics, plasma physics, wave propagation in shallow water, 
optical fibers, fluid mechanics, biology, solid-state physics. 
chemical kinematics, etc. It is widely known that the study of 
integrability and finding exact solutions of nonlinear equations 
are always one of the interesting topics in physics and 
mathematics. Over the past decade, the theory of various 
solutions has evolved in many different directions. Various 
nonlinear solutions, such as positons, solitons, and dromions, are 
presented for nonlinear integrable equations. Along with the 
development of the soliton theory, various powerful methods for 
working with nonlinear equations were developed, such as the 
inverse scattering transform [1], the Hirota bilinear method, and 
others. The theory of nonlinear partial differential equations has 
attracted much attention from researchers and is fundamentally 
connected with some major developments in the field of soliton 

theory. By a partial differential equation is meant an equation for 
a function of two or more variables containing at least one partial 
derivative of this function. Moreover, the function itself and 
independent variables may not be included in the equation 
explicitly. Any partial differential equation has an infinite 
number of solutions. Of greatest interest are solutions that satisfy 
the additional condition. These conditions are called boundary 
conditions and consist in specifying the behavior of the solution 
on some boundary line (surface) or in its immediate vicinity. 
From this point of view, the initial conditions are boundary 
conditions in time. Boundary conditions are used to select a 
particular solution from an infinite number of solutions. Almost 
any problem that describes a physical process and formulated in 
terms of partial differential equations includes boundary 
conditions. 
 
2.1 Two-dimensional Hirota-Maxwell-Bloch equation and its 
reduction 
 
One of the interesting integrable system is the so-called (1+1)-
dimensional Hirota-Maxwell-Bloch system. It describes the 
nonlinear dynamics of femtosecond pulse propagation through 
doped fibre.  
 
The two-dimensional Hirota-Maxwell-Bloch equations have the 
following form, (1-2)  

 0,=2)(21 ipwqivqqiqiq xxxyxyt −+−++ εε  (1) 

 0,=)(2)|(|2 **
2

2
1 xyxyyx qqqqiqv −−+ δεδε  (2) 

 0,=)|(|2 2
2 yx qw δε−                    (3) 

 0,=22 qpipx ηω −−                    (4) 

 0,=)( ** qppqx ++ δη                    (5) 

where pq,  - complex functions, η,, wv  - real-valued function. 
ωδεε ,,, 21  - real constants and 1= ±δ . The symbol * denotes 

complex pairing. This system is integrated by the inverse 
scattering method and admits the following integrable 
reductions: (2,3) 

Case 1: 0=1,= 21 εε  

 

 0,=2ipvqqiq xyt −−+                      (6) 

 0,=)|(|2 2
yx qv δ+                      (7) 

 0,=22 qpipx ηω −−                      (8) 

 0,=)( ** qppqx ++ δη                      (9) 

We obtain the (2+1)-dimensional Schrödinger-Maxwell-Bloch 
equations when 0=1,= 21 εε  (2,4)  

Case 2: 1=0,= 21 εε  

In this case, when 1=0,= 21 εε  we get (2+1)-dimensional 
complex modified Korteweg-de-Frieze-Maxwell-Bloch 
equations: (2,5)   

              0,=2)( ipwqivqiqiq xxxyt −+−+                        (10) 

 0,=)(2 **
xyxyx qqqqiv −− δ                    (11) 

 0,=)|(|2 2
yx qw δ−                    (12) 
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 0,=22 qpipx ηω −−                    (13) 

 0,=)( ** qppqx ++ δη                    (14) 

Case 3: 0=0,=1,=1,= 21 ηεε p  

In the third case, when 0=0,=1,=1,= 21 ηεε p  we get two-
dimensional Hirota equations: (2,6)  

                  0,=)( xxxyxyt wqivqiqqiq +−++  (15) 

 0,=)(2)|(|2 **2
xyxyyx qqqqiqv −−+ δδ  (16) 

 0,=)|(|2 2
2 yx qw δε−                    (17) 

In this paper, our goal is to find conservation laws for the two-
dimensional Hirota-Maxwell-Bloch equations through the Lax 
representation. 

3 Results and Discussion 

3.1 Lax representation 

The corresponding Lax representation is given as 
 ,= ΨΨ Ax                                      (18) 
 ,)4(2= 2

21 Ψ+Ψ+Ψ Byt λελε                     (19) 
where A  and B  have the following form 
 
 ,= 03 AiA +− λσ                                      (20) 

 
.= 101 −+

++ BiBBB
ωλ

λ
                    (21) 

Here  
 ,2= 03231 yAiiwB σεσ +                     (22) 
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and 

** =,= pkqr δδ , as well as 1= ±δ . The spectral parameterλ  
is detected as  
 
 .)4(2= 2

21 yt λλελελ +                                      (26)  
In this article, we restrict ourselves to the case 1= +δ  that 
corresponds to the attractive interaction. We note that by xy =  
system (1)-(5) turns into one-dimensional HMBE. (7) This fact 
explains why we called system (1)-(5) two-dimensional HMBE.  
 
4 Conservation laws 
 
Knowing the laws of the action of forces on a system of particles 
and the state of a system of particles (coordinates and velocities 
of all particles) at a certain initial moment of time, it is possible 
to predict its further behavior using the equations of motion, that 
is, to find the state of the system at any moment in time. 
However, a detailed consideration of the behavior of the system 
using the equations of motion is often associated with great 
mathematical difficulties. And in those cases when the laws of 
action of forces are unknown, this approach is in principle 
impracticable. Therefore, the question arises: are there any 
general principles that would allow a different approach to 
solving the problem? 

It turns out there are such principles. These are conservation 
laws. Conservation laws allow us to consider the general 
properties of motion without solving the equations of motion and 
detailed information on the development of processes in time. 
Conservation laws were established empirically, as a 
generalization of a huge number of experimental facts. In 
mechanics, three conservation laws matter: the conservation of 
energy, the conservation of momentum, the conservation of 

angular momentum. These laws are among those fundamental 
principles of physics, the importance of which is difficult to 
overestimate. Their role especially increased after it became 
clear that they go far beyond the framework of mechanics and 
represent universal laws of nature. In any case, still, not a single 
phenomenon has been discovered where these laws were 
violated. 

Having opened up the possibility of a different approach to the 
consideration of various mechanical phenomena, conservation 
laws have become a powerful and effective research tool that 
physicists use every day. This crucial role of conservation laws 
as a research tool is due to the following reasons. 

Conservation laws do not depend on the trajectories of 
movement, nor the nature of the acting forces. Therefore, they 
allow one to obtain some general and essential conclusions about 
the properties of various mechanical processes without going 
into a detailed discussion of them using the equations of motion. 

Since conservation laws do not depend on the nature of the 
acting forces, they can be used even when the forces are 
unknown. In these cases, conservation laws are the only and 
indispensable research tool. 

Even in cases where the forces are exactly known, conservation 
laws should be used in solving many problems of particle 
motion. Although all these problems can be solved using the 
equations of motion, the use of conservation laws very often 
allows us to obtain a solution most simply, saving us from 
tedious mathematical calculations. Therefore, when solving new 
problems, it is usually customary to adhere to the following 
order: first of all, the conservation laws are applied, and only 
after making sure that this is not enough, the equations of motion 
are used to solve the problem. 
 
Conservation laws are certain laws according to which some 
physical quantities are preserved without changing with time in 
certain interactions. Conservation laws play an important role in 
understanding the mechanisms of interaction of particles, their 
formation, and decay. Conservation laws determine the selection 
rules, according to which processes with particles leading to 
violation of conservation laws can occur in certain types of 
interactions. In addition to the conservation laws in force in the 
macrocosm, new conservation laws have been discovered in the 
physics of the microworld that explain the observed 
experimental laws. (8-10) 
 
Some of the conservation laws are always satisfied under any 
conditions (for example, the laws of conservation of energy, 
momentum, angular momentum, electric charge) or, in any case, 
processes that contradict these laws have never been observed. 
(11) Other laws are approximate and valid only under certain 
conditions (for example, the law of conservation of parity is 
valid for strong and electromagnetic interactions, but is violated 
with weak interactions). 
 
Conservation laws are the result of a generalization of 
experimental observations. Some of them were discovered as a 
result of the fact that the reactions or decays allowed by all 
previously known conservation laws were not observed or were 
strongly suppressed. So, the laws of conservation of baryonic, 
lepton charges, strangeness, charm, and others were discovered. 
Conservation laws can be considered as one of the integrable 
properties for nonlinear evolution equations. (12-15) Recently, 
several methods have been proposed for deriving conservation 
laws, for example, through the Lax representation, (16) the 
Bäcklund transform, (17) formal solutions of the eigenfunctions, 
(17-18) the scattering problem, (16-17) and the quasi-differential 
operator based on the theory Sato. (19-20) 
 
Now we find the conservation laws for the system (1)-(5). From 

12 /= ΨΨΓ  and Γiqw =  (21) Riccati type equation can be 
obtained through the Lax representation (18):  
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                  (27) 
We rewrite w  into the form of formal power series in regard to 
λ1/ ,  
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1=
n

n

n
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                                    (28) 
 
Substituting series (28) into the Riccati equation (27) and 
equating the expressions with the same powers λ , we obtain:  
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Substituting the above expressions into the compatibility 

condition t
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1 =
, we obtain an infinite number of 

conservation laws for the system (1)-(5):  
 

 
1,2,3....=  ,= i

x
J

t
ii

∂
∂

∂
∂ρ

                                    (32) 
 
In accordance with (12,21-22), iρ  and iJ  1,2,...)=(i  are the 
conserved densities and fluxes, respectively. The first three 
conservation laws that describe energy, momentum, and the 
Hamiltonian have the following form:  
 

 
,

2
= 2

1 qi
−ρ

                                    (33) 

 
,

4
1

2
= *2

2 xqqqwi
−−ρ

                                    (34) 

 
.

84
1

8
= **4

3 xxx qqiwqqqi
−−−ρ

                  (35) 
 
In deriving (33)-(35), we did not use (19); therefore, these 
expressions coincide for any equations solvable by (18). 
 
 ,248= *2***23

1 xxx pqqpqpqipqqiJ −−++ ωωηω  (36) 
 

,24

4444=
*2***2

23*
2

3*
1

3*
2

3
2

xxx

xyyx

pqqpqpqipq

qwiqqiqqwqqiJ

++−−

−+++
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ωεωεεω

(37) 
 

 .22

2222=
*2***2
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1
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2

24

2
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2
2
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xxxx

xyxxxxy

pqqpqpqiwqq

qqiwqqwqwqqwJ
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ωω
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                                                                        (38) 
 
4 Conclusion 

The Hirota and Maxwell-Bloch equations are well-known partial 
differential equations that provide a successful model in 
nonlinear optical theory. In this paper, for the first time, 
conservation laws were found for the two-dimensional Hirota-
Maxwell-Bloch equations with the corresponding Lax 
representation, which play an important role in creating complete 
integrability of the PDE. 
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