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Abstract: The testing of students' computational thinking and the development of 
standardized tools for this testing is one of the most debated issues in the practical 
integration of computational thinking development. Thus, for more than a decade, 
there have been initiatives aimed at identifying the algorithmic, programming,  
and information thinking skills of primary and secondary school students.  
The research, the progress, and results of which are the subject of the communication 
of this paper, has been our contribution to the development of testing tools that would 
allow for the widespread testing of the level of students' computational thinking, and 
that are not focused on the use of a specific programming language. As part of it, we 
were also able to identify a possible link between alternative methods of teaching 
mathematics, such as the Hejny method, and the deeper development of computational 
thinking in primary school pupils. 
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1 Introduction 
 
Accelerating technological development has brought many 
radical changes in all aspects of life and has undoubtedly 
affected the functioning of our society in recent decades. 
The expanding reach of the digital space and technological 
innovations leading to the modernization of industry, commerce 
and households have given rise to a plethora of new concepts 
related to digital and information technologies and their 
applications. One of these was computational thinking, which 
was introduced by Jeannette Wing in 2006 as an essential skill 
for modern humans who are able to make full use of digital 
technologies and computational methods to solve everyday 
problems. 

According to Wing, computational thinking is a thought process 
that enables one to formulate a problem and describe its solution 
in such a way that it can be effectively handled by a computer, 
machine or even a human (Wing, 2006). In general, therefore, it 
is a way of solving a problem that focuses on describing, 
analyzing and finding an effective way to solve it, emphasizing 
a systematic approach and the use of concepts known in the field 
of computer science. It is important to emphasize that the 
development of computational thinking does imply the 
development of programming skills exclusively. On the 
contrary, the concept of computational thinking suggests that 
everyone, not only the professional computer scientists, can use 
its related competences and skills. Thus, it contributes to 
the holistic development of students or students, with overlap 
into the development of their informatics competences. Since the 
first introduction of the concept of computational thinking (CT), 
there have been many international discussions about its precise 
definition, the specification of its dimensions, and the efforts to 
integrate the development of CT into the curriculum of 
educational systems all over the world. The introduction of 
the concept of computational thinking into academic debate has 
fostered a pedagogical discourse on the role of digital 
technologies in education and the possibilities of introducing 
computer science and programming into national curricula, 
which has existed almost since the early 2000s (Tran, 2017; 
Klement, 2018).  

Although computer literacy and the targeted development of 
digital and communication skills are still of considerable 
importance; there is a tendency to move the targeted 
development of these skills into the cross-curricular domain as 

part of the modernization of the whole education sector 
(Balanskat, 2018).  

Since the beginning of the international debate on integrating 
the development of computational thinking into the curriculum, 
numerous attempts have been made to define specific 
subdomains of computer science. The primary goal of this 
process is to specify an otherwise very general definition of the 
phenomenon of computational thinking, which is not suitable for 
the practical implementation of CT in the school system. 
Currently, most national curriculum definitions of the concept of 
computational thinking are based on or frameworks that align 
with the 2011 CSTA and ISTE definitions of the characteristics 
and competencies associated with CT use. These definitions 
were later simplified by many authors, and reduced to basic 
elements that summarize the original definitions in their essential 
principle.  

Even for pedagogical and educational purposes, 
the concretization of the areas defining CT is usually done by 
a detailed analysis of the text of the CSTA and ISTE documents. 
In the following comparative Table 1, we list the subcomponents 
of computational thinking based on the CSTA and ISTE 
definitions and the key words and phrases used in this definition 
according to Chen (2017). Based on these listed baseline 
components we define the corresponding CT skills (Angeli et al., 
2020, Bocconi et al., 2016, Wing 2014) that are associated with 
these concepts, and that computational thinking that students are 
expected to master. 
 
Table 1 Definition of domains for the development of 
computational thinking 

Original definitions 
of CSTA and ISTE Keywords Matching skill 

CT 
Formulate 
problems for 
machine solutions 

Formulation Syntax, coding 

Logically organize 
and analyze data Data Data processing 

Represent data 
using abstractions Representation Modelling 

Automate solutions 
using algorithmic 
thinking 

Algorithmic 
thinking 

Algorithmic 
thinking, 
automation 

Analyzing possible 
solutions to achieve  
the most efficient 
combination 

The most 
effective 
combinations 

Abstraction, 
optimization 

Generalize and 
apply a specific 
process to a 
solution problem 

Generalization 
Evaluation, 
debugging, 
generalisation 

 
Therefore, continuous research on material conditions, analysis 
of educational content, forms and methods of teaching, as well 
as the readiness of teachers, including the necessary 
competences for the development of computational thinking 
in their pupils and students, is necessary. In Europe, the 
European Schoolnet project, for example, has been mapping the 
problems accompanying the introduction of CT development in 
schools. According to the results of this research, the most 
significant shortcomings are the lack of teacher qualifications 
(Balanskat, 2018) and the absence of the necessary diagnostic 
tools for identifying the level of computational thinking in 
students (Tikva & Tambouris, 2021). Thus, a number of research 
activities in this area can be noted in the definition of CT content 
(e.g., Brennan, 2012, Kanemune, 2017, Moller & Crick, 2018, 
etc.), methods of teaching CT (e.g., Rubio et al., 2015, So, Jong, 
& Liu, 2020, etc.), and forms of teaching CT (Román-Gonzáles 
et al., 2017, Tran, 2017, Tang et al. 2020, etc.). However, less 
research has focused on the area of developing tools for testing 
students' levels of computational thinking (e.g., Hadad et al., 
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2020; Klement et al. 2020; Denning, 2017; Brennan & Resnick, 
2012, and others). 
 
2 Opportunities To Test The Level Of Computational Thinking 
 
Consequently, many researchers are currently trying to develop 
specific diagnostic tools that aim to directly test computational 
thinking development within students. The purpose of those 
tools is evaluation of both, the domestic state of development of 
computational thinking, and determining the position of the 
results of the state educational system at the international level. 
In Europe, the pioneer of standardized CT testing is Spain, 
where the question of measuring the level of CT development 
in primary school students has been discussed since 2015. 
Within the global discourse, the United States has come to the 
academic forefront on the issue of targeted testing.  

Probably the most widespread tool of measurement computing 
skills through didactic testing, which is implemented in the form 
of a test combining closed and open questions, is a computing 
challenge Bebras. The challenge focusses on students' general 
computational skills; however, its main aim is to popularize and 
promote computer science rather than to diagnose it. In the 
context of a didactic test measuring computational thinking with 
open-ended questions, it is worth mentioning the Psychometric 
Computational Thinking Test, or PCT test, by Julio Santisteban 
and Jennifer Santisteban-Muñoz (2018). In addition to those, 
the first standardized test of computational thinking in Europe 
was the CT-test by Román-González in 2015. This test was 
aimed at Spanish primary school pupils working in the Scratch 
environment and was therefore linked to a specific programming 
environment that the students were used to working with. 
A similar approach to the level of CT development testing with 
the use of a specific programming environment was a testing 
tool constructed by Chen et al. in 2017. This test combined open 
and closed questions, was designed for fifth-grade students 
and primarily focused on the use of CT in practical activities of 
daily living. 

Thus, globally, four types of evaluation of student development 
and performance are typically encountered when testing 
computational thinking in education, regardless of the level of 
education. Tang (2019) divides these categories according to 
the form of pupil work they work with, specifically the form of 
didactic test composed of open or closed questions, analysis of 
pupil portfolio evaluation, interview and survey. The following 
table elaborates the distribution of testing options and 
with examples of specific applications of the method: 

Table 2 Possibilities of determining the level of computational 
thinking 

Type  Practical use 
Didactic tests 
 

CT test with open 
questions 

Román-
González 
(2015) 
Santisteban 
(2018) 

CT test with closed 
questions 

Dolgopolovas 
(2015) 

Analysis of 
student work 
 

Analysis of the student's 
portfolio 

Román-
González 
(2015) 

Evaluation of the 
student's performance in 
solving the task 

Angeli (2020) 

Interview Usually a supplementary 
form of test 

Gülbahar 
(2018) 

Questionnaire Determines the student's 
attitude towards CT and 
related skills 

Sáez-López a 
kol. (2016) 

The mentioned tools for testing the level of students' 
computational thinking, however, may not always be suitable 
for widespread use, as they are either closely tied to one 
environment (CT-test) or are not primarily intended for use in 

mainstream education and focus more on talented individuals 
(BEBRAS). Another shortcoming of the assessed testing tools 
appears in the context of open-ended answers, where functional 
solutions may conflict with poor syntax, making it difficult to 
evaluate the results. The student is able to arrive at a solution to 
the problem presented, but this solution, although correct, does 
not correspond syntactically to any formal programming 
language. It is important to note, therefore, that the concept of 
CT does not relate to the learner's ability to use specific digital 
and communication technologies. At present, the school system 
is set up in such a way that the school chooses its own 
programming language, and there are therefore no official 
guidelines for selecting this programming language. It is 
therefore impossible to determine with certainty which 
programming environment the tested pupils will be able to work 
in. The use of tasks based on existing environments may favor or 
disadvantage pupils depending on their experience. Therefore, 
when designing a test instrument aimed at a large number of 
respondents, it is necessary to consider the complexity of 
the task and to simplify terminology that may be unfamiliar to 
the students. 

Taking into account the basis mentioned above, the aim of our 
research work was to develop a test instrument that would be 
able to measure the level of development of computational 
thinking in primary school pupils, to validate and standardize 
this test on a sufficiently large sample of primary school pupils, 
to process the obtained results statistically, and to prepare the 
test in a form suitable for widespread use in primary schools. 
The constructed test tasks can also serve as suggestions for 
methodological training of teachers, as well as a possible 
evaluation tool to determine the general level of development of 
computational thinking at the time of the general implementation 
of the new curriculum revision. 
 
3 Design Of A Didactic Test As A Diagnostic Tool 
 
Didactic tests are pedagogical diagnostic tools that are generally 
used to measure learning outcomes in schools in such a way that 
they can be subsequently evaluated and interpreted. The term 
didactic test has quite diverse definitions, depending on the 
author, but in general, it can be said that it is a test that is 
oriented to objectively determine the level of mastery of the 
curriculum in a certain group of people (Chráska, 2016). A 
quality didactic test must meet certain criteria and exhibit certain 
characteristics. Typical criteria that a didactic test must meet are 
validity, reliability and practicality, or objectivity, sensitivity, 
economy, etc. These criteria should already be considered in the 
design of the test itself, since the starting point of any test 
instrument design is, as a rule, the determination of the purpose 
of the test. The actual verification of the elementary properties of 
the instrument is then a matter of standardizing it in the context 
of validation, evaluation and interpretation according to certain 
predefined rules. 

To assess the validity of the questions, the Ebel method was 
used; in which experts divide the questions into two groups 
according to importance and difficulty. Each question was rated 
in terms of importance on a four-point scale with decreasing 
relevance, i.e. essential, important, useful and irrelevant, with 
irrelevant questions being excluded from the set. The difficulty 
scale is a standard three-step scale of decreasing difficulty, i.e. 
from difficult before medium to easy. The set of questions was 
then constructed based on expert judgement of the level of 
difficulty from the easiest to the most difficult questions in sets 
of three questions.  

3.1 Definition Of The Tested CT Framework And Its 
Dimensions 
 
Due to the nature of computational thinking and the 
characteristics of its constructs, we anticipated that different test 
items would have different importance in relation to different CT 
domains (Abstraction and Decomposition, Algorithmic 
Thinking, Generalization and Optimization, Evaluation and 
Debugging, Syntax), while some items may relate to several 
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different CT domains). For this reason, in the validation of the 
test items, we included the domain-specific determination, which 
according to the assessing experts was predominantly needed to 
solve the individual task. Determining the specific CT domain 
construct that the component measures is then a matter of 
determining the validity of the individual test items and the test 
itself. The internal structure-based validity assumes that each 
item has different importance in relation to the constructs and 
that some items are more related to another construct. Therefore, 
the items were weighted prior to final scoring, as we discuss in 
the diagnostic instrument validation methodology. 

Therefore, for the design of the test, the creation of test items, 
their validation, standardization, and their formal processing, we 
drew on a search of the literature dealing with the creation and 
methodology of didactic tests (Black, 1998; Chráska, 2016; 
Ackerman, 2019 and others), and especially on the 
methodological procedure developed by G. Chen (2017). The set 
of test questions, based on the prior premises, was designed as a 
level test. The time limit was set so as not to imply an 
interruption for the vast majority of students. Therefore, the test 
questions were ordered from easiest to hardest. In this case, there 
is no statistical bias in the results as the slowest pupils generally 
do not perform better on level tests when the time is extended 
(Chráska, 2016). 
 
Based on the set objectives, individual test tasks were designed 
that would be relevant and adequate to measure the required 
skills and knowledge in each CT domain. The individual tasks 
design was based on the intersection of the domestic definition 
with the internationally understood standard (Abstraction and 
Decomposition, Algorithmic Thinking, Generalization and 
Optimization, Evaluation and Debugging) and the component 
that is specific to the Czech primary school environment 
according to the National Institute for Education 
recommendations (Syntax): 
 
 Abstraction and Decomposition - tasks will focus on the 

ability to simplify a problem to its basic form so that 
essential information is not lost, and then work with a 
diagrammatic representation of the problem,  

 Algorithmic thinking - tasks will focus on the ability and 
skill to find an effective and efficient solution to a 
particular problem and to formulate the solution 
adequately, quite independently of practical programming,  

 Generalization and Optimization - tasks will focus on the 
ability to break down the whole into sub-components and 
to work with these sub-components, for example by 
optimizing functions, 

 Evaluation and Debugging - tasks will focus on the ability 
to analyze the problem, debug it to predict the outcome of 
the situation and the operation of the algorithm based on a 
critical analysis of the situation, 

 Syntax - in the context of the education of pupils in 
primary schools in the Czech Republic, we include this 
dimension following the original definition of CT 
according to the National Institute of Education. We define 
it as the ability to write a solution using an adequate 
programming language or code, at a level appropriate to 
the age of the pupil, understanding the principle of this 
writing, and the procedure of the problem solution, 
compliance with the laws of computer programming, and 
the ability to rewrite the solution so that it can be 
understood by a computer or an adequate machine. 

 

 
 
Figure 1 Final definition of dimensions of computational 
thinking for the purpose of testing the development of CT in 
primary schools in the Czech Republic 
 
3.2 Design Of The Didactic Test And Its Items 
 
In the development of the set of initial phases of the test items, a 
total of thirty test items of increasing difficulty were created, 
corresponding in equal proportion to the five predefined CT 
domains, from which a number of questions suitable to the age 
category of the tested pupils were selected after expert judgment. 

Each test item was designed to be a closed-ended multiple-
choice question. At the time of the beginning of the research, 
there was no validated computational thinking that corresponded 
to the legislative definition of the CT concept within the EU and 
the Czech Republic curriculum. For this reason, the tasks were 
principally designed on the basis of previous foreign research 
dealing with the creation of didactic tasks for the development of 
computational thinking, such as the CT-test by Román-González 
(2017) and the Beaver of Informatics contest. The content of the 
test items focused primarily on the areas of computational 
thinking that are defined by the Ministry of Education within its 
concept, especially from the revised Primary School Curriculum 
Framework (2022) and the recommendations of the European 
Commission, developed by CSTA/ISTE (2012).  

The test items were designed so that they were not dependent on 
a specific programming language or environment and therefore 
allowed for widespread deployment in the classrooms without 
the need for specialized software (graphical assignments with the 
option of printing and manual completion). Each test item 
consisted of a complex task whose solution required the use of a 
particular dimension of computational thinking.  

To avoid the problem of guessing the correct answers, each item 
of the test had a choice of four answers. Each question had to be 
answered within the test, so it was impossible to omit the 
answer. Each correct answer was scored with one point, and no 
points were deducted for a wrong answer. The final set of test 
items was sorted with increasing difficulty, with all CT 
dimensions of interest represented equally. 
 

 
 
Figure 2 Selected test tasks for determining the level of 
development of computational thinking 
 
Based on expert judgments regarding the difficulty and validity 
of the test items, we constructed a test set that consisted of 12 
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questions, which corresponded to the three main domains of the 
proposed CT theoretical framework; namely Abstraction and 
Decomposition, Algorithmic Thinking, and Syntax and Coding. 
For the questions, which were originally designed to determine 
the level of learners’ development in the dimensions of 
Generalization, and Evaluation and Debugging, the required 
condition of the consensus of expert assessments regarding the 
individual task, which had to be over 70 %, was not met. 
Moreover, while the average agreement of the experts' 
assessments for the items focused on Syntax and Coding was 69 
%, Abstraction and Decomposition corresponded to 68 %, and 
Algorithmic Thinking reached an average of 62 %, the average 
agreement of the Generalization and Optimization component 
reached only 32 % average agreement, and the Evaluation, 
Debugging and Solution Evaluation component only 32 %. 
Therefore, it can be suggested, that it is not entirely possible to 
identify exactly which dimension of CT is predominant within 
solution of those tasks. This tendency might also be supported 
by the fact that while evaluating the test items that were 
originally aimed on exploring the last two low-ranked CT 
dimensions, the experts did not identify their intended CT 
dimension as a dominant focus of those test items and gave more 
priority to Algorithmic Thinking, and Abstraction and 
Decomposition. For this reason, the Generalization and 
Optimization, and Evaluation and debugging dimensions were 
not considered as separate concepts in the final test but were 
included only as components of the other CT dimensions. 
 
Table 3 Concordance of expert assessments in the validation of 
test items according to CT dimensions 

Targeted CT dimension 

Average 
consensus of 
expert 
assessments 

Median 
consensus of 
expert 
assessments 

Evaluation/Debugging 32 % 31 % 
Generalization/Optimizatio

n 35 % 33 % 

Algorithmic thinking 62 % 64 % 
Abstraction/Decomposition 68 % 67 % 
Syntax/Coding 69 % 71 % 

 
4 Diagnostic Tool Validation Methodology 
 
The validity of the test items was verified from the perspective 
of experts dealing with the didactics of computer science and the 
development of computational thinking, who had the opportunity 
to assess the validity of the test items, their clarity, difficulty, 
and appropriateness in relation to the age and context of the test. 
These experts were from independent departments. This phase of 
preparation included checks for concurrent validity (comparison 
with other tests measuring the same ability) and predictive 
validity (comparison with performance in practice). In this phase 
of the research, 22 expert practitioners were involved in the 
validation of the instrument and were able to assess the test 
item's relevance in the CT domain, its level of difficulty, and its 
appropriateness to the target population. 

Determining the specific CT domain construct that the 
component measures, is a matter of determining the validity of 
the individual test items and the test itself. Internal structure-
based validity assumes that each item has different importance in 
relation to the constructs and that some items are more related to 
another construct. Therefore, items will need to be weighted 
before final scoring.  

Construct validity was further assessed using factor analysis, a 
technique that "groups observed variables (in our case, test 
items) into latent variables, (here, the related domain) based on 
common features in the data (e.g., Atkinson et al, 2011). There 
are two main approaches for factor analysis (exploratory and 
confirmatory). Confirmatory factor analysis (CFA) is used when 
there is an assumption about the underlying structure of the data 
and to confirm the structural model of the instrument (de Souza 
et al., 2019), while exploratory factor analysis is typically used 

to explore the dimensionality of the data. In our case, which 
aims to evaluate whether questions focused on each CT domain 
form coherent groups, we used CFA analysis. 

The selected test items that passed expert review were further 
pilot tested on a selected sample of primary school students and 
then evaluated. 
 
5 Diagnostic Tool Validation Results 
In the course of validating the test instrument, the traits of 
respondent's gender (boys - girls), year (4th and 5th grade of 
primary school) and two different schools were monitored 
among others. The test results were subjected to cluster analysis, 
which divided the study population into three clusters. The 
criterion was the overall success rate in the test. The first cluster 
contained respondents with test scores between 3 and 6. This 
cluster had the lowest occupancy, namely 10 respondents. The 
mean score in this cluster was x̄=5.3; SD=1.059. The other two 
clusters had similar frequencies. The cluster with scores ranging 
from 7-8 had 41 respondents, x̄=7.56; SD=0.502 and the last 
cluster with scores ranging from 9-12 had 43 respondents, x̄=9.9; 
SD=0.867. 

 
 

Figure 3 Cluster analysis: results of pupils from both schools 

We looked at which variables might affect the partitioning of the 
data into clusters. First, we used a two-sample Student's t-test of 
the agreement of means to test whether differences in test scores 
were influenced by respondents' gender. Forty-four girls and 50 
boys participated in the test. 
 
We established the following hypotheses: 
 
 Null hypothesis: H0: μ1 = μ2; i.e., there are no statistically 

significant differences between girls' and boys' 
performances. 

 Alternative hypothesis: HA: μ1 ≠ μ2 ; i.e., there are 
statistically significant differences between girls' and boys' 
performances. 

 
From the above table (p = 0.058), it is clear that the null 
hypothesis cannot be rejected. Therefore, the result is 
statistically insignificant at the level of α = 0.05. 
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Table 4 T-test results for the “gender” variable 
 Variable points 

T-
te

st
s;

 g
ro

up
in

g:
 B

=0
; 

G
=1

 
(G

ro
up

 1
=0

; g
ro

up
 2

=1
) 

Mean0 8.750000 
Mean1 8.080000 
t-value 1.913691 
df 92 
p 0.058769 
ValidN 0 44 
ValidN 1 50 
SD0 1.366118 
SD1 1.936123 
F-ratio Variances 2.008580 
P Variances 0.021398 

Next, we tested whether the differences between the test scores 
were statistically significant when comparing students in grades 
4 and 5. The test was administered to 51 4th grade students and 
43 5th grade students. 
 
We established the following hypotheses: 
 
 Null hypothesis: H0: μ1 = μ2 ; i.e., there are no statistically 

significant differences between the performance of students 
in grades 4 and 5. 

 Alternative hypothesis: HA: μ1 ≠ μ2 ; i.e., there are 
statistically significant differences between the 
performance of students in grades 4 and 5. 

 
Table 5 T-test results for the “grade” variable 

 Variable points 

T-
te

st
s;

 
gr

ou
pi

ng
: 

4t
h=

0;
 

5t
h=

1 
(G

ro
up

 
1=

1;
 

gr
ou

p 
2=

0)
 

Mean0 8.837209 
Mean1 8.019608 
t-value 2.354369 
df 92 
p 0.020681 
ValidN 0 43 
ValidN 1 51 
SD0 1.675172 
SD1 1.679169 
F-ratio Variances 1.004777 
P Variances 0.994092 

 
From the above table (p = 0.020681), it is clear that we reject the 
null hypothesis and accept the alternative hypothesis. Thus, the 
result is statistically significant at α= 0.05 level.  

We were not surprised by this result; it was expected that there 
would be the expected difference in performance affected by the 
age of the pupils. 
 
The final feature that we believe may have influenced the 
differences in performance on the submitted test was the school 
that the students attended. The test was taken by 31 pupils from 
School 1 and 63 from School 2. 
 
We set the following hypotheses: 

 Null hypothesis: H0: μ1 = μ2; that is, there are no 
statistically significant differences between the 
performance of the students of School 1 and School 2. 

 Alternative Hypothesis: HA: μ1 ≠ μ2 ; that is, there are 
statistically significant differences between the 
performances of the pupils of School 1 and School 2. 

 

Table 6 T-test results for the “method of mathematics teaching” 
variable 

 Variable points 

T-
te

st
s;

 g
ro

up
in

g:
 H

=0
; 

C
=1

 
(G

ro
up

 1
=0

; g
ro

up
 2

=1
) 

Mean0 9.064516 
Mean1 8.063492 
t-value 2.748125 
df 92 
p 0.007213 
ValidN 0 31 
ValidN 1 63 
SD0 1.388896 
SD1 1.776849 
F-ratio Variances 1.636673 
P Variances 0.141141 

 
From the above table (p = 0.007213), it is clear that we reject the 
null hypothesis and accept the alternative hypothesis. Thus, the 
result is statistically significant at α= 0.05 level. This result has 
already surprised us more. Therefore, we studied the above 
variables in more detail. In the next graph, the differences 
between the results of the studied groups are evident. 
 

 
 
Figure 4 Box Plot comparing success rates in the test 
 

 
 
Figure 5 Box Plot comparing means and confidence itervals 
 
We searched for the causes of this phenomenon. The influence 
of the teacher on students' performance on the observed test 
offers a logical possibility. However, in this case, we did not 
develop this reasoning further; the respondents in both sets 
of observations had received instruction with one, i.e., identical, 
teacher. We therefore asked what further might account for these 
differences, focusing on science instruction for computer science 
and other supporting science. In the course of the investigation, 
we found that in one of the schools studied, mathematics was 
taught using an alternative method - Hejny method. 
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6 Discussion 
 
On the basis of the research results described above, a possible 
link between teaching mathematics using the Hejny method and 
the deeper development of computational thinking in primary 
school pupils was revealed (Bryndová, 2021). In the developed 
test of computational thinking, pupils who are taught using the 
Hejny method achieve statistically conclusive better results than 
students with classical computer science teaching. This increased 
development is also observed in parallel classes in terms 
of specific abilities and skills associated with the CT concept. 
The currently tested sample of pupils shows better skills in 
algorithmizing (6% better than the parallel sample of pupils 
taught with classical mathematics), abstraction (5.8% better) and 
syntax (15% better). 
 

 
 
Figure 6 Differences between cumulative average results in each 
category (alternative teaching vs. classical teaching) 
 
The data also suggest a greater development of computational 
thinking in pupils taught with HM compared to the global 
sample tested (about 8%). However, the sample mentioned 
above is currently very small (for the school with combined 
mathematics teaching, nHM =31; nKM

 

 = 63, so these data have not 
yet been published. The data are visualized in the following 
graphs for the complete relevant set of questions (12 test items) 
with increasing difficulty. 

 
 
Figure 7 Differences between the averages of the results in each 
question (ALT vs. CLASS) – blue line= Hejny method; red line = 
classical teaching of mathematics 
 
Q1, Q4, Q7, Q10 – Questions – Logical thinking 
Q2, Q5, Q8, Q11 – Questions - Syntax 
Q3, Q6, Q9, Q12 – Questions – Algorithmization 
 
 
 
 

7 Conclusion 
 
The development of computational thinking and the modern 
teaching of informatics in primary schools is currently, in many 
ways, the subject of extensive discourse worldwide (Li et al., 
2021; Bryndová, Klement, 2021; Tripon, 2022 and others). The 
implemented revision of the informatics curriculum has 
universally introduced fundamental changes in the concept of 
teaching informatics in primary schools and introduced a new 
educational area of Informatics. The primary purpose of this 
revision is the development of computational thinking, i.e., a set 
of certain computational skills, qualities and attitudes to ensure 
that graduates of primary education understand the basic 
principles of digital and information technologies, and possibly 
further development in this area. 

Thus, at present, many researchers are trying to develop specific 
diagnostic tools that would be aimed directly at testing 
computational thinking and would allow evaluating both the 
domestic state of development of computational thinking and 
determining the position of the results of the state educational 
system at the international level. Our contribution in the field of 
developing testing tools that would allow for the widespread 
testing of the level of students' computational thinking and not 
be focused on the use of a specific programming language was 
the research whose progress and results are the subject of the 
communication of this paper. 

Based on the findings, a possible link between teaching 
mathematics using the Hejny method and a deeper development 
of computational thinking in primary school pupils was revealed 
(Bryndova, 2021). In the developed test of computational 
thinking, pupils who are taught using the Hejny method achieve 
statistically conclusive better results than pupils with classical 
computer science teaching. These results suggest that there is a 
potentially neglected area of cross-curricular development of 
computational thinking in the current school system. The 
interdisciplinary development of computational thinking is 
directly supported by its original conception, which defines it as 
a modern problem-solving competency using practices and 
methods that are primarily prominent in computer science and 
computing but offer applications beyond them (Wing, 2014). 
While these results cannot be considered entirely significant, 
given the size of the research sample, they do suggest a possible 
direction for further research efforts by the authors' collective. 
These may focus on research into the impact of alternative 
methods of mathematics education, such as the Heine method, 
on the development of knowledge in specific CT domains 
(decomposition, debugging, abstraction, (data) modelling and 
algorithmizing). 
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