
A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

SOME IMPROVEMENTS OF THE GENETIC ALGORITHM FOR QUEUEING THEORY

aPAVOL ORŠANSKÝ, b
Department of Applied Mathematics, The Faculty of Mechanical
Engineering at the University of Zilina, Univerzitná 8215/1, 010
26 Žilina, Slovakia

VLADIMÍR GULDAN

email: apavol.orsansky@fstroj.uniza.sk,
b

vladimir.guldan@fstroj.uniza.sk

This work was supported by KEGA under the Grant No. 029ŽU-4/2022 “Implementa-
tion of the principles of blended learning into the teaching of the subject Numerical
Methods and Statistics”.

Abstract: In this work, we deal with the use of optimization methods of the genetic
algorithm queueing theory. Concrete for the optimization of production process plans
in serial production. Specifically, we deal with the creation of an optimal sequence of
production processes with regard to time and economic savings. In addition to the
classically used genetic algorithms, we will focus on their improvements, such as the
Tabu search, the penalty algorithm and simulated annealing. The simulation modeling
took place in the Matlab environment.

Keywords: Optimization, Genetic algorithm, Simulated annealing.

1 Introduction to optimization flow-shop scheduling

Optimization is the search for the best solution from a set of
possible solutions. In this case, we do not understand the term
"solution" only in a strictly mathematical sense, such as solving
an equation. Optimization deals with the search for the global
minimum (or maximum) of functions of many variables with
respect to possible limiting conditions. Many tasks from both
engineering practice and natural sciences correspond to this
general definition.

Flow-shop scheduling is an optimization problem in computer
science and operations research. It is a variant of optimal job
scheduling. In a general job-scheduling problem, we are given
𝑛 jobs 𝐽1, 𝐽2, … , 𝐽𝑛 of varying processing times, which need to be
scheduled on m machines with varying processing power, while
trying to minimize the makespan – the total length of the schedu-
le (that is, when all the jobs have finished processing). In the
specific variant known as flow-shop scheduling, each job conta-
ins exactly m operations. The 𝑖-th operation of the job must be
executed on the 𝑖-th machine. No machine can perform more
than one operation simultaneously. For each operation of each
job, execution time is specified. The flow shop problem is a
special case of the job shop problem.

There are m machines and 𝑛 jobs. Each job contains exactly
𝑚 operations. The 𝑖-th operation of the job must be executed on
the 𝑖-th machine. No machine can perform more than one ope-
ration simultaneously. For each operation of each job, execution
time is specified.

Operations within one job must be performed in the specified
order. The first operation gets executed on the first machine,
then (as the first operation is finished) the second operation on
the second machine, and so on until the 𝑚-th operation. Jobs can
be executed in any order, however. Problem definition implies
that this job order is the same for each machine. The problem is
to determine the optimal such arrangement, i.e., the one with the
shortest possible total job execution makespan. [1]

The planning problem generally belongs to NP-complete pro-
blems (nondeterministic polynomial-time complete). This means
that the time required to solve an NP-complete problem grows
asymptotically faster than polynomially (usually exponentially)
with the size of the problem input (instance). The consequence is
that the time required to solve even moderately large instances of
NP-complete problems easily reaches billions or trillions of
years using any amount of computing power available today.
This is also why the question of whether it is possible to solve
NP-complete problems efficiently is one of the central questions
of computer science today. [2]

More extensive problems must be solved by heuristic methods,
which do not guarantee finding an optimal solution, nor can they

determine how close to the optimum a certain admissible soluti-
on is but are able to provide a "satisfactory" solution in a reaso-
nable time. Evolutionary algorithms based on biological
knowledge are a special chapter of heuristic algorithms. The
disadvantages of these algorithms include the probabilistic
nature of the results. This means that a different result may occur
after each run. Among the basic and best-known evolutionary
algorithms at the present time is so called genetic algorithm and
its improvements such as the Tabu search, simulated annealing
and the penalty algorithm.

2 Genetic algorithm

The genetic algorithm (GA) is a method for solving optimization
problems that is based on natural selection, the process that
drives biological evolution. It was pioneered by John Hol-land
(1975) and his students at the University of Michigan. [3] The
GA repeatedly modifies a population of individual solutions. At
each step, the genetic algorithm selects individuals from the
current population to be parents and uses them to produce the
children for the next generation. Over successive generations,
the population "evolves" toward an optimal solution. The genetic
algorithm is a non-deterministic method of problem solving
based on the principles of Darwin's theory of evolution. Each
solution to the problem is called a chromosome and is made up
of a binary string of a given length, which is the same for all
chromosomes of the given population. A population is a finite
set of chromosomes.

Figure 1: This flow chart outlines the main algorithmic steps.

The GA uses three main types of rules at each step to create the
next generation from the cur-rent population:

Selection rules select the individuals, called parents, that contri-
bute to the population at the next generation. The selection is
generally stochastic and can depend on the individuals' scores.

Crossover rules combine two parents to form children for the
next generation.

Mutation rules apply random changes to individual parents to
form children.

The selection is based on the fitness function. The fitness functi-
on is the function you want to optimize. For standard optimizati-
on algorithms, this is known as the objective function. The
fitness value of an individual is the value of the fitness function
for that individual. To create the next generation, the genetic
algorithm selects certain individuals in the current population,
called parents, and uses them to create individuals in the next
generation, called children. Typically, the algorithm is more
likely to select parents that have better fitness values.

The algorithm creates crossover children by combining pairs of
parents in the current population. At each coordinate of the child
vector, the default crossover function randomly selects an entry,
or gene, at the same coordinate from one of the two parents and
assigns it to the child. For problems with linear constraints, the
default crossover function creates the child as a random weigh-
ted average of the parents.

- 315 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

The algorithm creates mutation children by randomly changing
the genes of individual parents. The GA differs from a classical,
derivative-based, optimization algorithm in two main ways. GA
generates a population of points at each iteration. The best point
in the population approaches an optimal solution, unlike classi-
cal algorithm, which generates a single point at each iteration.
The sequence of points approaches an optimal solution. GA
selects the next population by computation which uses random
number generators, unlike classical algorithm, which selects the
next point in the sequence by a deterministic computation. [4, 5]

Graph 1: Results of a simple example of optimizing the task of
a business traveler using a genetic algorithm for 1000 genera-
tions. Finding the shortest path between 200 points is the task of
finding the shortest distance between 200! = 8.8 ∙ 10377
permutations. The found path is not the shortest but it is found in
real time.

2.1 Tabu search

Tabu search (TS) is a metaheuristic search method employing
local search methods used for mathematical optimization. The
method was created by Fred W. Glover in 1986 and formalized
in 1989. The basic idea of TS is to penalize moves that take the
solution into previously visited search spaces (also known as

tabu). TS does deterministically accept non-improving solutions
in order to prevent getting stuck in local minimums. During the
algorithm, the best solution is recorded, which we consider to be
the resulting optimal solution. The disadvantage of this algori-
thm is that after a certain given number of interaction steps it
returns to the local solution that has already occurred in the
previous steps. This deficiency was solved by introducing the so-
called short-term and long-term memory.

Short-term memory (tabu list) contains inverse transformations
to the transformations used in previous interactions. If the trans-
formation is contained in a tabu sheet, then it cannot be used to
construct the neighborhood of the current solution. When the
algorithm is initialized, the tabu sheet is empty, after each ite-
ration a transformation is added to it, which provided a locally
optimal solution. After the tabu list is filled, it is updated in each
iteration (the length of the ban for all moves is reduced by one).
An important parameter is the length of the tabu sheet. If the size
is too small, then looping of the algorithm may occur. If the
length is too large, then with a high probability we will miss
local minima, which could be global minima. The search process
can be significantly improved by using the so-called aspirational
criteria. An aspirational criterion is a condition that allows
ignoring a tabu constraint under certain circumstances (e.g.,
a forbidden move leads to a solution that is better than all soluti-
ons achieved so far).

Long-term memory works by disadvantaging (penalizing) those
transformations which are not contained in the tabu list, but
often occurred in the previous history of the algorithm. We
distinguish two processes, intensification and diversification.
Intensification strategies will focus on supporting "good" attribu-
tes in the search for solutions. Diversification strategies instead
generate solutions involving attributes significantly different
from those encountered in the previous search process. [6, 7, 8]

2.2 Penalty algorithm

The idea of using penalty functions in calculations was for the
first time presented in [9]. Sometimes they have been used in
optimization techniques. Several early approaches of evolutiona-
ry computations using the penalty functions were born in 1993–
1995 [10]. Since genetic algorithms are generic search methods,
most applications of genetic algorithms to constraint optimizati-
on problems have used the penalty function approach of hand-
ling constraints. The most frequently used and the simplest
approach is penalization, in which the original fitness function
𝑓(𝑥) is supplemented with a penalty function. The objective
function 𝐹(𝑥) expanded in this way has the form

𝐹(𝑥) = 𝑓(𝑥) + penalty(𝑥).

The penalty function approach involves a number of penalty
parameters which must be set right in any problem to obtain
feasible solutions. This dependency of genetic algorithms per-
formance on the penalty parameters has led researchers to devise
sophisticated penalty function approaches, such as multilevel
penalty functions, dynamic penalty functions, and penalty
functions involving temperature-based evolution of penalty
parameters with repair operators.

We decided to make the optimization algorithm more efficient
by introducing a dynamic penalty. This means that the amount of
the penalty increases during the calculation depending on the
number of generations. We have therefore introduced a variable
into the algorithm which grows during the calculation, always
after a certain number of generations (is multiplied to the se-
cond). The weight of such an increasing penalty increases with
the increasing number of generations. [11, 12]

2.3 Simulated annealing

The basics of this method were first published in 1953 in an
algorithm that simulated the cooling of the material in a hot bath.
In the early 1980s, Kirkpatrick, Gelatt and Vecchi (1983) [13]
and independently Vladimír Černý (1985, MFF UK in Bratisla-

- 316 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

va) [14] proposed that this type of simulation could be used to
find admissible solutions of optimization problem in order to
ensure convergence to an optimal solution. They also proposed
its current name, simulated annealing (SA).

Physical Annealing is the process of heating up a material until it
reaches an annealing temperature and then it is cooled down
slowly in order to change the material to a desired structure.
When the material is hot, the molecular structure is weaker and
is more susceptible to change. When the material cools down,
the molecular structure is harder and is less susceptible to chan-
ge.

The acceptance criterion determines whether a new solution is
accepted or rejected. The acceptance depends on the energy
difference between the new solution and the current solution, as
well as the current temperature. The classic acceptance criterion
of SA comes from statistical mechanics, and it is based on the
Boltzmann probability distribution. A system in thermal equilib-
rium at temperature 𝑡 can be found in a state with energy 𝐸 with
a probability proportional to

𝑃(∆𝐸) = e
−∆𝐸
𝑘∙𝑡),

where 𝑘 is the Boltzmann constant. Hence, at low temperatures,
there is a small chance that the system is in a high-energy state.
This plays a crucial role in SA because an increase in energy
allows escape from local minima and find the global minimum.

Based on the Boltzmann distribution, the following algorithm
defines the criterion for accepting an energy variation ∆𝐸 at
temperature 𝑡. If we 𝑡,∆𝐸 are the temperature and energy vari-
ation between new and current one candidate, than the pseudo-
code for SA could be written in the next form.

if (∆𝐸 < 0) then

true;

else

𝑟 = random number ∈ [0,1);

 if 𝑟 < exp(−∆𝐸/(𝑘 ∙ 𝑡)) then

 true;

 else

 false;

 end

end

A candidate solution with lower energy is always accepted.
Conversely, a candidate solution with higher energy is accepted
randomly with probability 𝑃(∆𝐸) = exp(−∆𝐸/𝑘 ∙ 𝑡). The latter
case can be implemented by comparing the probability with
a random value generated in the range [0, 1). The temperature
schedule determines how the temperature of the system changes
over time. In the beginning, the temperature is high so that the
algorithm can explore a wide range of solutions, even if they are
worse than the current solution. As the iterations increase, the
temperature gradually decreases, so the algorithm becomes more
selective and accepts better solutions with higher probability.
A simple scheduling can be obtained by dividing the current
temperature by a factor 0 < 𝛼 < 1.

And so, as a final improvement, we supplemented the algorithm
with a decision to accept a new individual into the next generati-
on based on the principle of simulated annealing. The mutation
operation is of more fundamental importance to the calculation
process, we decided to apply this procedure to it. And so that the
quality (determined by the objective function) of each mutated
individual is compared with the quality of its predecessor. If the
quality of the mutated is better than the quality of the predeces-
sor, the mutated advances to the next generation. If not, it advan-

ces to the next generation with a probability given by the princi-
ple of simulated annealing. [15, 16]

3 Results

We simulated the algorithm to run a production schedule optimi-
zation with a dynamic penalty and a decision operation using
simulated annealing after mutation for 50 entities with pre-
defined move times between entities. The termination of the
simulation occurs if the smallest dynamic penalty is sufficiently
close to zero, which means that the found approximate solution
is not an approximation of the local solution. The entire simu-
lation was programmed in the Matlab environment.

Of course, we could explore countless cases with different input
conditions or different borderline situations, but for reasons of
capacity we will limit ourselves to a minimalistic abridgement
for one case of input conditions. The results are in the following
graphs (Graphs 2-4).

4 Discussion

The first and second attempts decrease quite clearly, although
the second attempt shows a strong influence of the increasing
penalty caused by the penalty of simulated annealing. This also
caused a higher number of generations of the genetic algorithm
simulation. But the third case is somewhat borderline, as the
penalty grew exponentially. However, this was apparently
caused by a sharp drop in the fit value at the beginning of the
simulation, i.e. the "annealing temperature", which subsequently
caused a sharp increase in the penalty. Even this did not cause
the divergence of the algorithm, which stopped after a higher
number of generations, but with an acceptable value of the fit
function.

Graph 2: Simulation (first attempt) results for 50 randomly
selected flow-shop operations with predefined times between
operations, with a population size of 200.

Graph 3: Simulation (second attempt) results for 50 randomly
selected flow-shop operations with predefined times between
operations, with a population size of 200.

- 317 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Graph 4: Simulation (third attempt) results for 50 randomly
selected flow-shop operations with predefined times between
operations, with a population size of 200.

5 Conclusion

Genetic algorithms are widely used in practice, not only techni-
cal and economic, but also, as we can see, in production proc-
esses. As a method for solving both constrained and uncon-
strained optimization problems that is based on natural selection,
the process that drives bio-logical evolution can be the genetic
algorithm apply the genetic algorithm to solve a variety of
optimization problems that are not well suited for standard
optimization algorithms, including problems in which the objec-
tive function is discontinuous, nondifferentiable, stochastic, or
highly nonlinear. All three mentioned ways of improving this
algorithm not only speed up the algorithm but also increase its
reliability.

Literature:

1. GAREY M. R., JOHNSON D. S., RAVI SETHI: The Com-
plexity of Flow-shop and Job-shop Scheduling, Mathematics of
Operations Research, Volume 1 (Issue 2), 1976. 117-129 p.
2. COBHAM A.: The intrinsic computational difficulty of functi-
ons. Logic, methodology and philosophy of science, Proceedings
of the 1964 International Congress, edited by Yehoshua Bar-
Hillel, Studies in logic and the foundations of mathematics,
North-Holland Publishing Company, Amsterdam 1965. 24–30 p.
3. HOLLAND J. H.: Adaptation in natural and artificial sys-
tems, University of Michigan Press, Ann Arbor, MI, 1975.
4. FOGEL D. B.: Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence, 3rd Edition, Wiley-IEEE
Press Series on Computational Intelligence, 2005. 296, ISBN
978-0-471-66951-7.
5. MATHWORKS: MATLAB Documentation, The MathWorks,
Inc., 2023.
6. GLOVER F.: Future Paths for Integer Programming and
Links to Artificial Intelligence, Computers and Operations
Research, Volume 13 (Issue 5), 1986. 533–549 p.
7. GLOVER F.: Tabu Search - Part I., ORSA Journal on Com-
puting, Volume 1 (Issue 3), 1989. 190-206 p. ISSN 0899-1499.
8. GLOVER F.: Tabu Search—Part II., ORSA Journal on Com-
puting, Volume 2 (Issue 1), 1990. 4-32 p. ISSN 0899-1499.
9. COURANT R.: Variational methods for the solution of pro-
blems of equilibrium and vibrations, Bulletin of the American
Mathematical Society, Volume 49 (Issue 1), 1943, 1-23 p., ISSN
02730979.
10. GEN M., CHENG R.: A survey of penalty techniques in
genetic algorithms, Proceedings of IEEE International Conferen-
ce on Evolutionary Computation, Nagoya, Japan, 1996. 804–809
p. ISBN 0-7803-2902-3.
11. DEB K.: Optimization for Engineering Design: Algorithms
and Examples, Prentice-Hall, New Delhi, 1995. 421 p. ISBN
978-81-203-4678-9.
12. OTTEN R. H. J. M., GINNEKEN L. P. P. P.: Annealing
Algorithm. Kluwer, Boston: 1989. 201 p. ISBN 0-7923-9022-9.

13. KIRKPATRICK S., GELLAT Jr. C. D., VECCHI M. P.:
Optimization by Simulated Annealing, Science 220 (Issue 4598)
1983. 671-680 p.
14. ČERNÝ V.: Thermodynamical approach to the traveling
salesman problem. An efficient simulation algorithm, Journal of
Optimization Theory and Applications 45, 1985. 41–51 p.
15. LAARHOVEN P. J. M., AARTS E. H. L.: Simulated Annea-
ling. Theory and Applications, Reidel, Dordrecht 1987. 157-187
p. ISBN 978-94-015-7744-1.
16. REKLAITIS G. V., RAVINDRAN, A., RAGSDELL, K. M.:
Engineering optimization: Methods and applications. Wiley,
1981. 973 p.

Primary Paper Section: B

Secondary Paper Section: BB, BC

- 318 -

