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Abstract: In this work, we deal with the use of optimization methods of the genetic 
algorithm queueing theory. Concrete for the optimization of production process plans 
in serial production. Specifically, we deal with the creation of an optimal sequence of 
production processes with regard to time and economic savings. In addition to the 
classically used genetic algorithms, we will focus on their improvements, such as the 
Tabu search, the penalty algorithm and simulated annealing. The simulation modeling 
took place in the Matlab environment. 
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1 Introduction to optimization flow-shop scheduling 
 
Optimization is the search for the best solution from a set of 
possible solutions. In this case, we do not understand the term 
"solution" only in a strictly mathematical sense, such as solving 
an equation. Optimization deals with the search for the global 
minimum (or maximum) of functions of many variables with 
respect to possible limiting conditions. Many tasks from both 
engineering practice and natural sciences correspond to this 
general definition. 

Flow-shop scheduling is an optimization problem in computer 
science and operations research. It is a variant of optimal job 
scheduling. In a general job-scheduling problem, we are given 
𝑛 jobs 𝐽1, 𝐽2, … , 𝐽𝑛 of varying processing times, which need to be 
scheduled on m machines with varying processing power, while 
trying to minimize the makespan – the total length of the schedu-
le (that is, when all the jobs have finished processing). In the 
specific variant known as flow-shop scheduling, each job conta-
ins exactly m operations. The 𝑖-th operation of the job must be 
executed on the 𝑖-th machine. No machine can perform more 
than one operation simultaneously. For each operation of each 
job, execution time is specified. The flow shop problem is a 
special case of the job shop problem. 

There are m machines and 𝑛 jobs. Each job contains exactly 
𝑚 operations. The 𝑖-th operation of the job must be executed on 
the 𝑖-th machine. No machine can perform more than one ope-
ration simultaneously. For each operation of each job, execution 
time is specified. 

Operations within one job must be performed in the specified 
order. The first operation gets executed on the first machine, 
then (as the first operation is finished) the second operation on 
the second machine, and so on until the 𝑚-th operation. Jobs can 
be executed in any order, however. Problem definition implies 
that this job order is the same for each machine. The problem is 
to determine the optimal such arrangement, i.e., the one with the 
shortest possible total job execution makespan. [1] 

The planning problem generally belongs to NP-complete pro-
blems (nondeterministic polynomial-time complete). This means 
that the time required to solve an NP-complete problem grows 
asymptotically faster than polynomially (usually exponentially) 
with the size of the problem input (instance). The consequence is 
that the time required to solve even moderately large instances of 
NP-complete problems easily reaches billions or trillions of 
years using any amount of computing power available today. 
This is also why the question of whether it is possible to solve 
NP-complete problems efficiently is one of the central questions 
of computer science today. [2] 

More extensive problems must be solved by heuristic methods, 
which do not guarantee finding an optimal solution, nor can they 

determine how close to the optimum a certain admissible soluti-
on is but are able to provide a "satisfactory" solution in a reaso-
nable time. Evolutionary algorithms based on biological 
knowledge are a special chapter of heuristic algorithms. The 
disadvantages of these algorithms include the probabilistic 
nature of the results. This means that a different result may occur 
after each run. Among the basic and best-known evolutionary 
algorithms at the present time is so called genetic algorithm and 
its improvements such as the Tabu search, simulated annealing 
and the penalty algorithm.  
 
2 Genetic algorithm 
 
The genetic algorithm (GA) is a method for solving optimization 
problems that is based on natural selection, the process that 
drives biological evolution. It was pioneered by John Hol-land 
(1975) and his students at the University of Michigan. [3] The 
GA repeatedly modifies a population of individual solutions. At 
each step, the genetic algorithm selects individuals from the 
current population to be parents and uses them to produce the 
children for the next generation. Over successive generations, 
the population "evolves" toward an optimal solution. The genetic 
algorithm is a non-deterministic method of problem solving 
based on the principles of Darwin's theory of evolution. Each 
solution to the problem is called a chromosome and is made up 
of a binary string of a given length, which is the same for all 
chromosomes of the given population. A population is a finite 
set of chromosomes. 
 

 
 

Figure 1: This flow chart outlines the main algorithmic steps. 

The GA uses three main types of rules at each step to create the 
next generation from the cur-rent population: 

Selection rules select the individuals, called parents, that contri-
bute to the population at the next generation. The selection is 
generally stochastic and can depend on the individuals' scores. 

Crossover rules combine two parents to form children for the 
next generation. 

Mutation rules apply random changes to individual parents to 
form children. 

The selection is based on the fitness function. The fitness functi-
on is the function you want to optimize. For standard optimizati-
on algorithms, this is known as the objective function. The 
fitness value of an individual is the value of the fitness function 
for that individual. To create the next generation, the genetic 
algorithm selects certain individuals in the current population, 
called parents, and uses them to create individuals in the next 
generation, called children. Typically, the algorithm is more 
likely to select parents that have better fitness values.  

The algorithm creates crossover children by combining pairs of 
parents in the current population. At each coordinate of the child 
vector, the default crossover function randomly selects an entry, 
or gene, at the same coordinate from one of the two parents and 
assigns it to the child. For problems with linear constraints, the 
default crossover function creates the child as a random weigh-
ted average of the parents.  
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The algorithm creates mutation children by randomly changing 
the genes of individual parents. The GA differs from a classical, 
derivative-based, optimization algorithm in two main ways. GA 
generates a population of points at each iteration. The best point 
in the population approaches an optimal solution, unlike classi-
cal algorithm, which generates a single point at each iteration. 
The sequence of points approaches an optimal solution. GA 
selects the next population by computation which uses random 
number generators, unlike classical algorithm, which selects the 
next point in the sequence by a deterministic computation. [4, 5] 
 

 
Graph 1: Results of a simple example of optimizing the task of 
a business traveler using a genetic algorithm for 1000 genera-
tions. Finding the shortest path between 200 points is the task of 
finding the shortest distance between 200! = 8.8 ∙ 10377   
permutations. The found path is not the shortest but it is found in 
real time. 
 
2.1 Tabu search 
 
Tabu search (TS) is a metaheuristic search method employing 
local search methods used for mathematical optimization. The 
method was created by Fred W. Glover in 1986 and formalized 
in 1989. The basic idea of TS is to penalize moves that take the 
solution into previously visited search spaces (also known as 

tabu). TS does deterministically accept non-improving solutions 
in order to prevent getting stuck in local minimums. During the 
algorithm, the best solution is recorded, which we consider to be 
the resulting optimal solution. The disadvantage of this algori-
thm is that after a certain given number of interaction steps it 
returns to the local solution that has already occurred in the 
previous steps. This deficiency was solved by introducing the so-
called short-term and long-term memory. 

Short-term memory (tabu list) contains inverse transformations 
to the transformations used in previous interactions. If the trans-
formation is contained in a tabu sheet, then it cannot be used to 
construct the neighborhood of the current solution. When the 
algorithm is initialized, the tabu sheet is empty, after each ite-
ration a transformation is added to it, which provided a locally 
optimal solution. After the tabu list is filled, it is updated in each 
iteration (the length of the ban for all moves is reduced by one). 
An important parameter is the length of the tabu sheet. If the size 
is too small, then looping of the algorithm may occur. If the 
length is too large, then with a high probability we will miss 
local minima, which could be global minima. The search process 
can be significantly improved by using the so-called aspirational 
criteria. An aspirational criterion is a condition that allows 
ignoring a tabu constraint under certain circumstances (e.g., 
a forbidden move leads to a solution that is better than all soluti-
ons achieved so far). 

Long-term memory works by disadvantaging (penalizing) those 
transformations which are not contained in the tabu list, but 
often occurred in the previous history of the algorithm. We 
distinguish two processes, intensification and diversification. 
Intensification strategies will focus on supporting "good" attribu-
tes in the search for solutions. Diversification strategies instead 
generate solutions involving attributes significantly different 
from those encountered in the previous search process. [6, 7, 8] 
 
2.2 Penalty algorithm 
 
The idea of using penalty functions in calculations was for the 
first time presented in [9]. Sometimes they have been used in 
optimization techniques. Several early approaches of evolutiona-
ry computations using the penalty functions were born in 1993–
1995 [10]. Since genetic algorithms are generic search methods, 
most applications of genetic algorithms to constraint optimizati-
on problems have used the penalty function approach of hand-
ling constraints. The most frequently used and the simplest 
approach is penalization, in which the original fitness function 
𝑓(𝑥) is supplemented with a penalty function. The objective 
function 𝐹(𝑥) expanded in this way has the form 

𝐹(𝑥) = 𝑓(𝑥) + penalty(𝑥). 

The penalty function approach involves a number of penalty 
parameters which must be set right in any problem to obtain 
feasible solutions. This dependency of genetic algorithms per-
formance on the penalty parameters has led researchers to devise 
sophisticated penalty function approaches, such as multilevel 
penalty functions, dynamic penalty functions, and penalty 
functions involving temperature-based evolution of penalty 
parameters with repair operators. 

We decided to make the optimization algorithm more efficient 
by introducing a dynamic penalty. This means that the amount of 
the penalty increases during the calculation depending on the 
number of generations. We have therefore introduced a variable 
into the algorithm which grows during the calculation, always 
after a certain number of generations (is multiplied to the se-
cond). The weight of such an increasing penalty increases with 
the increasing number of generations. [11, 12] 
 
2.3 Simulated annealing 
 
The basics of this method were first published in 1953 in an 
algorithm that simulated the cooling of the material in a hot bath. 
In the early 1980s, Kirkpatrick, Gelatt and Vecchi (1983) [13] 
and independently Vladimír Černý (1985, MFF UK in Bratisla-
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va) [14] proposed that this type of simulation could be used to 
find admissible solutions of optimization problem in order to 
ensure convergence to an optimal solution. They also proposed 
its current name, simulated annealing (SA). 

Physical Annealing is the process of heating up a material until it 
reaches an annealing temperature and then it is cooled down 
slowly in order to change the material to a desired structure. 
When the material is hot, the molecular structure is weaker and 
is more susceptible to change. When the material cools down, 
the molecular structure is harder and is less susceptible to chan-
ge. 

The acceptance criterion determines whether a new solution is 
accepted or rejected. The acceptance depends on the energy 
difference between the new solution and the current solution, as 
well as the current temperature. The classic acceptance criterion 
of SA comes from statistical mechanics, and it is based on the 
Boltzmann probability distribution. A system in thermal equilib-
rium at temperature 𝑡 can be found in a state with energy 𝐸 with 
a probability proportional to 

𝑃(∆𝐸) = e
−∆𝐸
𝑘∙𝑡 ), 

where 𝑘 is the Boltzmann constant. Hence, at low temperatures, 
there is a small chance that the system is in a high-energy state. 
This plays a crucial role in SA because an increase in energy 
allows escape from local minima and find the global minimum. 

Based on the Boltzmann distribution, the following algorithm 
defines the criterion for accepting an energy variation ∆𝐸 at 
temperature 𝑡. If we 𝑡,∆𝐸 are the temperature and energy vari-
ation between new and current one candidate, than the pseudo-
code for SA could be written in the next form. 
 

if (∆𝐸 < 0 ) then 

true; 

else 

𝑟 =  random number ∈ [0,1); 

 if  𝑟 < exp(−∆𝐸/(𝑘 ∙ 𝑡))   then  

  true; 

 else 

  false; 

 end 

end 
 
A candidate solution with lower energy is always accepted. 
Conversely, a candidate solution with higher energy is accepted 
randomly with probability 𝑃(∆𝐸) = exp(−∆𝐸/𝑘 ∙ 𝑡). The latter 
case can be implemented by comparing the probability with 
a random value generated in the range [0, 1). The temperature 
schedule determines how the temperature of the system changes 
over time. In the beginning, the temperature is high so that the 
algorithm can explore a wide range of solutions, even if they are 
worse than the current solution. As the iterations increase, the 
temperature gradually decreases, so the algorithm becomes more 
selective and accepts better solutions with higher probability. 
A simple scheduling can be obtained by dividing the current 
temperature by a factor 0 < 𝛼 < 1. 

And so, as a final improvement, we supplemented the algorithm 
with a decision to accept a new individual into the next generati-
on based on the principle of simulated annealing. The mutation 
operation is of more fundamental importance to the calculation 
process, we decided to apply this procedure to it. And so that the 
quality (determined by the objective function) of each mutated 
individual is compared with the quality of its predecessor. If the 
quality of the mutated is better than the quality of the predeces-
sor, the mutated advances to the next generation. If not, it advan-

ces to the next generation with a probability given by the princi-
ple of simulated annealing. [15, 16] 
 
3 Results 
 
We simulated the algorithm to run a production schedule optimi-
zation with a dynamic penalty and a decision operation using 
simulated annealing after mutation for 50 entities with pre-
defined move times between entities. The termination of the 
simulation occurs if the smallest dynamic penalty is sufficiently 
close to zero, which means that the found approximate solution 
is not an approximation of the local solution. The entire simu-
lation was programmed in the Matlab environment. 

Of course, we could explore countless cases with different input 
conditions or different borderline situations, but for reasons of 
capacity we will limit ourselves to a minimalistic abridgement 
for one case of input conditions. The results are in the following 
graphs (Graphs 2-4). 
 
4 Discussion 
 
The first and second attempts decrease quite clearly, although 
the second attempt shows a strong influence of the increasing 
penalty caused by the penalty of simulated annealing. This also 
caused a higher number of generations of the genetic algorithm 
simulation. But the third case is somewhat borderline, as the 
penalty grew exponentially. However, this was apparently 
caused by a sharp drop in the fit value at the beginning of the 
simulation, i.e. the "annealing temperature", which subsequently 
caused a sharp increase in the penalty. Even this did not cause 
the divergence of the algorithm, which stopped after a higher 
number of generations, but with an acceptable value of the fit 
function. 

 
Graph 2: Simulation (first attempt) results for 50 randomly 
selected flow-shop operations with predefined times between 
operations, with a population size of 200. 

 
Graph 3: Simulation (second attempt) results for 50 randomly 
selected flow-shop operations with predefined times between 
operations, with a population size of 200. 
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Graph 4: Simulation (third attempt) results for 50 randomly 
selected flow-shop operations with predefined times between 
operations, with a population size of 200. 
 
5 Conclusion 
 
Genetic algorithms are widely used in practice, not only techni-
cal and economic, but also, as we can see, in production proc-
esses. As a method for solving both constrained and uncon-
strained optimization problems that is based on natural selection, 
the process that drives bio-logical evolution can be the genetic 
algorithm apply the genetic algorithm to solve a variety of 
optimization problems that are not well suited for standard 
optimization algorithms, including problems in which the objec-
tive function is discontinuous, nondifferentiable, stochastic, or 
highly nonlinear. All three mentioned ways of improving this 
algorithm not only speed up the algorithm but also increase its 
reliability. 
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