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Abstract: The article presents the possibility of solving a complex Multi Facility 
Location Problem in Excel and its use in military practice. Based on a simple model 
example (25 branches, 5 centers), it gradually verifies the individual steps leading to 
the solution of the optimization requirement of increasing (decreasing) the number of 
centers, weight of branches, capacity of centers, and forbidden (permitted) areas. 
These examples are solved using the evolutionary method in Excel. Finally, this 
method solves an example in the range of 100 to 3 and the result is verified by 
calculation by the metaheuristic method. This demonstrates the ability to solve this 
type of tasks in the proposed way. 
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1 Introduction 
 
In our work (1), we have shown that MFLP tasks can be solved 
using office software on personal computers. In the work (2) the 
method of solution and test tasks were presented, on which the 
solution of MFLP with weight was verified. To get closer to 
solving practical problems, we tried to implement other options 
into the method. Thus, we came to the proposal of solving 
complex tasks, including the weight of points - MFLP-W, the 
capacity of centers - MFLP-C and work with forbidden or, 
conversely, ordered areas - MFLP-A of the respective MFLP-R. 
Areas are defined as convex polygons. 
 
The purpose of this work is to demonstrate the capability of 
Excel-Solver's evolutionary procedure to solve the MFLP. The 
test task is designed so that partial evaluation of the obtained 
results is possible without the need for additional control 
calculations. It has been confirmed that the proposed 
methodology can successfully address intricate test cases, 
regardless of the quantity of points, centers, and areas involved, 
provided that simple test cases can be tackled using this 
approach. In (1) and (2), the dependence of the complexity of the 
test task and hardware on the achieved results was investigated. 
It was found that the inaccuracy of the calculations using the 
evolutionary method can be successfully compensated by 
repeating the calculations. 
 
The article is arranged as follows. After reviewing the literature 
on this topic in section 1.1. and its possible use on the example 
of military practice in section 1.2., Section 1.3 outlines the 
presentation of the objective of this study, as well as the 
formulation of the MFLP-W, MFLP-C, MFLP-A, and MFLP-R 
problems. Section 2. describes the methods used, the 
comparative task and the procedure leading to the solution of the 
required type of MFLP. The test task was designed based on the 
results of works (1) and (2). Calculations are performed on a 
regular PC. The test task is mainly used to verify that the design 
of the problem-solving procedure is correct, the accuracy of the 
result in this phase of verification is not emphasized. The results 
of the optimization of individual tasks and their combinations 
are presented in section 3. There are also listed the problems that 
were observed for individual tasks and the resulting limitations. 
Section 4 presents a discourse and draws conclusions for this 
manuscript. 
 
 
 
 
 

1.1 Related work 
 
In the literature review, we focused on solving the above types 
of problems - using heuristic methods and the using of Excel in 
solving localization problems. 

The paper An efficient algorithm for facility location in the 
presence of forbidden regions (3) examines a constrained Weber 
problem. This work addresses the problem of locating a new 
facility in convex polygonal restricted regions. Minimize the 
weighted distance between the new facility and n pre-existing 
facilities. A forbidden region is assumed to be a plane's restricted 
travel and facilities area. It is also accepted that this setting uses 
the Euclidean-distance metric to measure distance. This work 
presents a nonconvex programming approach. Iteratively solving 
unconstrained problems yields a local optimum for the starting 
restricted problem. The material offers numerical examples. 
 
The Weber problem involves placing a new facility on a two-
dimensional plane among a finite number of pre-existing 
facilities. Minimize the weighted sum of distances between the 
new and existing facilities. This issue is changed when facilities 
are on opposite sides of a linear obstacle. Rivers, highways, 
borders, and mountains are frequent barriers. Manuscript Planar 
Weber location problems with line barriers (4) discusses non-
convex optimization techniques and structural insights. Distance 
function and barrier passage number and placement determine 
the difficulty. 
 
Designing a distribution network in a supply chain system: 
Formulation and efficient solution procedure (5) examines the 
process of establishing an effective distribution network. The 
essay addresses supply chain distribution network architecture. 
This comprises finding appropriate locations for production 
plants and distribution warehouses and developing successful 
techniques for getting items from the plants to the warehouses 
and from the warehouses to end customers. The study addresses 
these issues. The goal is to find the best plant and warehouse 
numbers, locations, and capacities to meet customer demand 
while minimizing distribution network costs. Studying reveals 
storage and plant capacities. This computational study evaluates 
production and distribution planning integration. A mixed 
integer programming model and efficient heuristic solution were 
developed for the supply chain system problem. 
 
An efficient solution method for Weber problems with barriers 
based on genetic algorithms (6) determines the optimal location 
of a new facility in relation to a pre-existing set of facilities in a 
two-dimensional plane, accounting for convex polyhedral 
barriers. Barriers are assumed to be areas where facilities and 
travel are prohibited. A few convex subproblems can simplify 
the non-convex optimization issue. The Weiszfeld algorithm 
solves these subproblems, especially those using the Weber 
objective function and Euclidean distances. The present work 
uses a genetic algorithm to iteratively choose subproblems to 
quickly find a solution for the overarching problem. Visibility 
arguments reduce the number of subproblems to consider, and 
numerical examples are provided. 
 
Placing a finite size facility with a center objective on a 
rectangular plane with barriers (7) addresses finite-size 1-center 
placement on a rectangular plane with barriers. As described in 
reference (7), the proposed solution places a finite facility with a 
center objective on said plane. Barriers impede amenities and 
movement. Facilities are located in cells. Cells are evaluated by 
their corners to meet the center's minimax target. The facility 
dominated when completely enclosed in cells with one, two, or 
three corners. When the facility intersects gridlines, distance 
function analysis is difficult. This case's difficulties have been 
studied and translated into a linear or nonlinear program, 
depending on the viable region's convexity. A numerical 
example illustrates the paper's complexity study. 
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Integrated use of fuzzy c-means and convex programming for 
capacitated multi-facility location problem (8) solves a 
capacitated multi-facility location problem using a fuzzy c-
means clustering approach. The challenge involves capacitated 
supply centers serving known demand sites. Fuzzy c-means and 
convex programming are used. The fuzzy c-means algorithm 
assigns data points to several clusters with different membership 
levels. This feature distributes demand among supply centers. 
An gradual strategy starts with two and ends when each cluster 
has enough capacity to match its demand. Each cluster group and 
model is treated as a facility location challenge. Next, convex 
programming optimizes transportation costs to refine each fuzzy 
c-means facility location problem. The proposed method has 
been tested in several facility location scenarios and compared to 
center of gravity and particle swarm optimization algorithms. 
This study presents real-world asphalt producer statistics from 
Turkey. The numerical results show that the suggested 
methodology beats traditional fuzzy c-means and the combined 
use of center of gravity strategies for transportation costs. 
 
Two meta-heuristics for a multi-period minisum location-
relocation problem with line restriction (9) investigates a multi-
period minisum location-relocation problem with rectilinear 
distance. The mixed-integer nonlinear programming (MINLP) 
paradigm includes a line-shaped barrier limitation. The barrier 
starts uniformly in the aircraft. The model minimizes the total 
costs related to the predicted weighted barrier distance between 
the new facility and the current ones and relocation costs that 
rely on location within the planning horizon. Next, a restricted 
area-based lower limit is set. Numerical examples validate the 
model. Results show that the optimization software can solve 
smaller difficulties. The optimization software can't solve large 
issues quickly. Genetic and imperialist competitive meta-
heuristics are proposed in the paper. Finally, the results are 
compared. 
 
Article Combining possibilistic linear programming and fuzzy 
AHP for solving the multi-objective capacitated multi-facility 
location problem (10) proposes a solution. The technique 
evaluates quantitative and qualitative aspects from many angles. 
Decision-makers must consider both factors to accurately 
represent complex real-world applications. This study presents a 
novel approach that integrates a two-phase possibilistic linear 
programming technique and a fuzzy analytical hierarchical 
process method to optimize two objective functions, "minimum 
cost" and "maximum qualitative factors benefit," in a four-stage 
supply chain network involving suppliers, plants, distribution 
centers, and customers, while accounting for vagueness. This 
study's numerical example shows the methodology's findings. 
Conclusions discuss this approach's benefits. 
 
INSPM: An interactive evolutionary multi-objective algorithm 
with preference model (11) models DM preferences using the 
Interactive Non-dominated Sorting algorithm with Preference 
Model (INSPM). The IN-SPM identifies a non-uniform 
sampling method for the Pareto-optimal front that uses detailed 
sampling for the decision maker's favorite regions and coarse 
sample for the non-preferred regions. A Radial Basis Function 
(RBF) network is used to calculate the Decision Maker (DM) 
utility function from ordinal data from DM queries. INSPM 
invokes the DM's preference model using DCD density control. 
This strategy improves Pareto-optimal front sampling density by 
increasing sampling in favored regions and decreasing it in non-
preferred regions. 
 
In The capacitated multi-facility weber problem with polyhedral 
barriers: Efficient heuristic methods (12), polyhedral barriers 
prevent facility placement and transit. Transportation costs 
depend on both linear distances and polyhedral barrier sizes and 
location. This circumstance creates a non-convex optimization 
problem, making solution difficult. This paper proposes 
location-allocation and discrete approximation heuristics tailored 
to the problem. Randomly generated test instances underwent 
extensive computational experiments. The results show that the 
heuristic approaches are successful and yield promising results 
for this difficult topic. 

Exact and approximate heuristics for the rectilinear Weber 
location problem with a line barrier (13) expands the multi-
Weber facility location problem to include rectilinear-distance 
and crossings through non-horizontal line barriers. For the 
single-facility situation, a divide-and-conquer precise heuristic 
outperforms other literature heuristics. An alternate-location-
allocation heuristic using precise and inexact methods solves the 
problem of managing multiple facilities. Large instances can be 
handled with a polynomial-time heuristic. This method produces 
near-optimal, fast solutions with a small gap. A benchmark 
converts the core problem into a p-median problem for testing. 
Experimental results show that the recommended heuristics 
work. These heuristics produce high-quality results in reasonable 
time. 

This paper addresses the capacitated multi-facility Weber issue 
using rectilinear, Euclidean, squared Euclidean, and lp distances. 
Identifying m Euclidean plane facilities with limited capacity to 
satisfy n clients while minimizing transportation costs is the 
issue. The distance between clients and facilities and the number 
of units being delivered determine the cost of transportation, 
which is publicly available. This work proposes three new 
heuristic methods based on simulated annealing, threshold 
acceptance, and genetic algorithms. Benchmark results show that 
heuristics create high-quality solutions. The paper Solving the 
Capacitated Multi-Facility Weber Problem by Simulated 
Annealing, Threshold Accepting and Genetic Algorithms (14) 
found that the heuristic using simulated annealing and the two-
variable exchange neighborhood structure performed best (14). 
 
Facility placement on a two-dimensional plane is restricted in 
restricted planar location challenges. Congested polygons are 
highly inhabited. Due to restricted space, these places make 
facility location difficult, however transportation is achievable at 
a fixed cost. This study shows that determining optimal locations 
in congested regions on the Euclidean plane is a broader version 
of the two extensively researched restricted planar facility 
location problems involving forbidden regions and barriers. The 
constrained planar location problem is addressed by three 
metaheuristic algorithms with local search procedures. User 
interface modules execute algorithms on test instances and do 
computational experiments. The study shows that the proposed 
algorithms can solve large issues (15). 
 
In addition to our own resources (1) and (2), the MFLP solution 
with weight, capacity, and areas in Excel, or other widely 
available software, is not described in the available literature. 
Because the terminology is ambiguous, Section 1.2. defines the 
problems and their designations used in this work. 
 
1.2 Application of MFLP in supporting the decision-making 
process in planning the deployment of critical artillery 
support locations 
 
Solving sophisticated MFLP tasks using MS Excel can find 
applications in several fields. The previous article outlined some 
possible applications of the MFLP method (1). These were 
applications for military logistics and support of the Tactical 
Decision Support System. The use of the MFLP method is 
shown in this article in the practical example of logistical 
support of artillery units in combat. 
 
Artillery has played and continues to play an essential role on 
the battlefield, as evidenced by current conflicts, especially the 
one in Ukraine (16,17). However, the activity of artillery units is 
tied to logistics capabilities. This is mainly in the material 
supply, without which artillery cannot provide fire support. 
Artillery significantly burdens logistical support and thus plays a 
critical role in providing continuous fire support on the 
battlefield (18). 
Artillery fire units have a limited amount of supplies available 
for the execution of firing missions, which they are able to carry 
themselves. This is particularly the amount of ammunition, fuel, 
and other materials. These supplies must be replenished during 
combat (19). 
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Figure 1. Scheme of artillery units in combat 

Artillery units are within the operation deployed in areas, so-
called Position Area for Artillery, from where they provide fire 
support and in which they can maneuver without any 
restrictions. Inside the Position Area for Artillery, it is possible 
to distinguish (among other things) two basic types of positions. 
Firing positions are specific locations where artillery units 
conduct fires. The number of firing positions depends on factors 
like tactical situation, number of units, and so on (20,21). 

The second type of position is designated to hide artillery units 
and replenish supplies. After completing the firing mission, the 
artillery units maneuver to a concealed position, remaining in the 
breaks between firing missions. These concealments are chosen 
to protect from direct observation from the enemy while being 
close to the firing positions. In these locations, material 
maintenance is carried out in combat conditions, but in 
particular, supply spots are established, where ammunition, fuel, 
and other materials are replenished. In a military environment, 
these resupply spots are called R3P - rearm, refuel, resupply 
points. R3P spots are established in advance (if the tactical 
situation allows it) close to firing positions so that the resupply 
takes place as efficiently as possible. The amount of these supply 
spots in the area depends on the number of firing positions. 
However, it is generally possible to say that one supply spot can 
provide supplies for multiple units – thus also firing positions in 
the area (22). For the article, we can thus distinguish two basic 
types of locations. Firing positions represent branches, while 
supply spots (R3P points) represent the centers we try to find 
using the specified criteria. 
 
Using the MFLP method to objectively find locations for these 
supply spots based on the location of firing positions is possible. 
Such an application can then serve the needs of the commander's 
decision on the location of these supply spots in the Military 
Decision Making Process (MDMP) process and thus facilitate 
his decision. The number and locations of firing positions and 
the corresponding supply spot(s) are chosen based on several 
criteria. These criteria can be the tactical situation, the operation 
phase, the terrain conditions, and the possibilities of concealment 
or the number of units operating. Artillery units can use firing 
positions depending on the nature of the firing missions. For this, 
the weighting criteria of the MFLP algorithm can be used. 
Individual firing positions can be prioritized by weights, 
depending on the tactical situation or, e.g., the operation phase. 
In determining the positions of supply spots under these 
conditions, it is possible to achieve that they will be chosen 
concerning the weight - the priority of the firing positions. We 
can also include the capacities of individual supply spots in the 
algorithm. The capacity of supply spots expresses the ability of 
the supply spot to provide ammunition and other material for 
only a certain number of spots, i.e., in our case, the units in the 
firing position. The number of supply spots (centers) can thus be 
adjusted to ensure sufficient supplies for all units in firing 
positions in the position area for artillery. The least but not last 
criteria with which the MFLP algorithm can work are area 
constraints. When entering the calculation of supply spots, it is 
possible to determine the areas in which they must or must not 
be located. This means it is possible to include the boundaries 
designated for artillery units in calculating supply spot locations 
so that these spots are located inside this area. Similarly, it is 
then possible to proceed with the condition that the supply spots 
are not located inside the forbidden area. Forbidden areas may 
represent places where the geographical conditions do not allow 
for the deployment of supply spots, etc. 

Position determination of the supply spots need not pose a 
problem when it is necessary to determine the supply spot 
(center) for only a few firing positions (spots). However, if there 
are more spots, an objective assessment of the location of the 
supply spots (centers) can be problematic. 
 
1.3. Problem formulation 
 
The formulation of the problem is processed for each test 
separately. Tests are designed from the simplest to the most 
complex. 
 
1.3.1 TEST A-1 (5/25) 
 
There exist a set of p points, for which the coordinates of their 
respective positions are known. There are c centers where the 
coordinates of their positions are unknown. The variable c is a 
positive integer and p is an integer greater than or equal to c. The 
aim is to determine the locations of the centers in such a way that 
the total distance between each center and its designated points 
is minimized. Each individual point will be allocated to a single 
center. 
 
A practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
firing positions' coordinates are established, while the supply 
locations will be formed anew. The specific locations of the 
supply spots and the corresponding firing positions they are 
intended to serve have not been specified. For this test is c=5 and 
p=25. 
 
The problem can be expressed mathematically in the following 
manner. Let  be a set of points 
 ; the coordinates of these points are defined 
as . Let  be a set of 
centers ; The precise coordinates of said 
points remain unknown, as they are actually under optimization. 

The Euclidean distance between a center   
 and point ,  The value is 

determined based on the computation outlined in equation [1]. In 
a general sense, it is possible to utilize any spatial configuration, 
dimensional quantity, and metric for measuring distance. 

,       
 ,  

[1] 

where  is the distance between center  and 
point ; ,  are coordinates of the center , and ,  are 
coordinates of point . 

The solution is therefore the matrix X (assignment matrix) 
described in formula [2] 

,where 

   

[2] 

  
Each point is assigned to exactly one center. Therefore, in each 
column there is exactly one "1" and  "0", so it must be: 

 

[3] 

Formula [4] displays the optimization function for the MFLP 
problem. The aforementioned statement pertains to the total of 
the distances that exist between each point and the centers that 
have been assigned to them. The objective is to determine the 
optimal positions of c centers in order to minimize the objective 
function D. In the context of two-dimensional space, the number 
of continuous optimization variables is 2c. 
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[4] 

 
1.3.2 TEST A-2 (3/25) 
 
The formulation is the same as for test A-1 (5/25) but c=3 
 
1.3.3 TEST A-3 (3/25 W) 
 
The dataset consists of a set of p points, each with known 
positional coordinates and an associated weight. There are c 
centers where the coordinates of their positions are unknown. 
The variable c is a positive integer and p is an integer greater 
than or equal to c. The aim is to determine the locations of the 
centers such that the total weighted distance between each center 
and its designated points is minimized. Each data point will be 
allocated to a single centroid that is in closest proximity to it. A 
practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
locations of the firing positions are known; the supply spots will 
be built as new. In this case the firing positions have a different 
supply requirements depending e.g. on the phase of operation or 
may be prioritized for another reason. These different supply 
requirements are taken into account in the calculation by means 
of weights. For this test is c=3 and p=25. 
 
The mathematical expression of this particular problem is 
identical to that of the instance A-1, but every Pj have a weight 

; where  represents a preference for some 
points over others. 
 
Formula [1] is utilized to calculate the Euclidean distance 
between a center and any given point. However, the coordinates 
of the centers are determined by means of formula [5]. 

For a given solution given by the matrix  the 
coordinates of all centers can be determined ,  

 as follows: 

  

 

[5] 

Formula [6] demonstrates the optimization of the MFLP-W 
problem. The aforementioned pertains to the summation of 
distances that have been weighted between each point and their 
respective designated centers. The purpose of the function is to 
calculate the sum of distances between all points and their 
respective assigned centers, with each distance being weighted. 

  [6] 

  
1.3.4 TEST A-4 (3/25 C) 
 
There exist a set of p points, for which the coordinates of their 
respective positions are known. There are c centers where the 
coordinates of their positions are unknown. The variable c is a 
positive integer, where c ≥ 1, and the variable p is a positive 
integer, where p ≥ c. The aim is to determine the locations of the 
centers in such a way that the total distance between each center 
and its designated points is minimized. Each individual point 
will be allocated to a single center. Assign a capacity to each 
center that restricts the upper limit of points that can be assigned 
to given center.  
 
A practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
firing positions' coordinates are established, while the supply 
locations will be set up as novel deployments. The specific 
locations of the supply spots and the corresponding firing 
positions they are intended to serve have not been specified. 
Each supply spot shall have a capacity representing the 

maximum number of points it is able to provide supplies for. For 
this test is c=3 and p=25. 
 
The mathematical formulation of this problem is identical to that 
of example A-1, with the exception that each center possesses a 
capacity ; where  represents the maximum 
number of points that are allocated to a given center. 
 
Any number of points can be assigned to center , but that the 
capacity of the center must not be exceeded. The relation defined 
by formula [7] therefore applies. 

  [7] 
Formula [1] is utilized to compute the Euclidean distance 
between a center and any point in a two-dimensional space. 
Formula [4] displays the optimization function for the MFLP-C 
problem. The aforementioned pertains to the aggregate of 
distances linking each point to its designated centers. The 
objective is to determine the optimal positions of c centers such 
that the objective function D is minimized while ensuring that 
the capacity of each center is not surpassed. In the context of 
two-dimensional space, the number of continuous optimization 
variables is 2c. 
 
1.3.5 TEST A-5 (3/25 CW) 
 
The given dataset comprises of p discrete points, each with 
known positional coordinates, a corresponding weight. Every 
center has a specified capacity. The aim is to determine the 
optimal locations of the centers such that the total weighted 
distance between each center and its designated points is 
minimized, while ensuring that the capacity constraint of each 
center is not violated. 
 
A practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
firing positions' coordinates are established, while the supply 
locations will be constructed afresh. The specific locations of the 
supply spots and the corresponding firing positions they are 
intended to serve have not been specified. Firing posts have a 
different supply prioritisation represented by weights and each 
supply spot shall have a capacity representing the maximum 
number of points it is able to provide supplies for. For this test is 
c=3 and p=25. 
 
The mathematical formulation of this problem is the 
combination of tests A-1 to A-4. 
 
The solution is then the matrix of assignments given in the 
formula [5], where the center coordinates are calculated as the 
center of gravity of all assigned points with weights. At the same 
time, the condition applies that any number of points can be 
assigned to center , but that the capacity of the center must not 
be exceeded. This condition is defined by formula [8]: 
 

  [8] 
     

Formula [1] is utilized to compute the Euclidean distance 
between a center and any point in a two-dimensional space. 
Formula [6] displays the optimization function for the MFLP-
CW problem. The aforementioned pertains to the summation of 
weighted distances between each point and its corresponding 
assigned centers. The objective is to determine the optimal 
positions of c centers such that the objective function D is 
minimized while ensuring that the capacity of each center is not 
exceeded. In the context of two-dimensional space, it can be 
observed that there exist a total of 2c continuous optimization 
variables. 
 
1.3.6 TEST B-1 (3/25 CWA) 
 
The given dataset comprises of p distinct points, each having a 
designated weight and every center with a specific capacity. The 
coordinates of these points are known. The aim of this study is to 
determine the optimal positions of centers such that the total 
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weighted distance between each center and its assigned points is 
minimized, while ensuring that the capacity of each center is not 
surpassed and that all centers are situated within the specified 
area. 
 
A practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
firing position coordinates are established and must be situated 
within the designated artillery position area, along with the 
newly constructed supply spots. The specific locations of the 
aforementioned supply spots and the corresponding firing 
positions they are intended to serve have not been delineated. 
Firing posts have a different supply prioritisation represented by 
weights and each supply spot shall have a capacity representing 
the maximum number of points it is able to provide supplies for. 
For this test is c=3 and p=25. 
 
The mathematical expression of this particular problem is 
identical to that of tests A-5, but all centers must be located is 
designated area. 
 
The areas in which the centers must be located are defined as 
convex polygons ; with coordinates of vertices  

. 

Consider v functions in formula [9] that are linear to x,y: 
 

 
[9] 

 
If all  in inequalities in formula [10] are valid, then the center 

 lies in the given area, i.e. in a convex polygon . 
, 

where  is a half-plane determined by a straight line 
 and point , , 

 

[10] 

Formula [1] is utilized to compute the Euclidean distance 
between a center and any point in a two-dimensional space. 
Formula [6] depicts the optimization function for the MFLP-
CWA problem. Formula [8] demonstrates that it is equivalent to 
the total of weighted distances between each point and its 
designated centers. The objective is to minimize the objective 
function D while ensuring that the capacity of the center is not 
surpassed by determining the optimal locations of c centers. In 
the context of two-dimensional space, it can be observed that 
there exist a total of 2c continuous optimization variables. 
 
1.3.7 TEST B-2 (3/25 CWR) 
 
The dataset comprises a set of p points, each with known 
coordinates, a corresponding weight. Every center has a 
designated capacity. The aim of the study is to determine the 
optimal positions of the centers such that the total weighted 
distance between each center and its assigned points is 
minimized, while ensuring that the capacity of each center is not 
surpassed and that all centers are situated outside of the 
designated restricted area. 
 
A practical example is an artillery battery with existing firing 
positions (Pj) for which needs to be set up supply spots (Ci) that 
will provide supplies for artillery units in firing positions. The 
firing positions' coordinates are determined, whereas the supply 
spots are to be constructed anew and ought to be situated beyond 
the restricted zone. The specific locations of the supply spots and 
the corresponding firing positions they are intended to serve 
have not been delineated. Firing posts have a different supply 
prioritization represented by weights and each supply spot shall 
have a capacity representing the maximum number of points it is 
able to provide supplies for. For this test is c=3 and p=25. 
 
The mathematical representation of this particular problem is 
identical to that of tests B-1, with the exception that all centers 
are required to be situated outside of the designated area. 
 
Proceeding again from  functions in formula [9]. If at least  

one of  inequalities in formula [11] is valid, then the center 
 is not located in the given area, i.e. in a convex polygon  

. ,  
where  is a half-plane determined by a straight line 

 and point  
,  

 
[11] 
 

Formula [1] is utilized to compute the Euclidean distance 
between a center and any point in a two-dimensional space. 
Formula [6] depicts the optimization function for the MFLP-
CWR problem. Formula [8] demonstrates that it is equivalent to 
the total of weighted distances between each point and its 
designated centers. The objective is to determine the optimal 
positions of c centers such that the objective function D is 
minimized while ensuring that the capacity of each center is not 
surpassed. In the context of two-dimensional space, it can be 
stated that there exist 2c optimization variables that are 
continuous. 
 
1.3.8 TEST B-3 (3/25 CWAR) 
 
The given dataset comprises of p points, each with known 
positional coordinates, a corresponding weight. Every center 
with a designated capacity. The aim is to determine the locations 
of the centers such that the total weighted distance between all 
centers and their designated points is minimized, while ensuring 
that the capacity of each center is not surpassed. Simultaneously, 
it is required that one of the centers be situated within polygon 
A, while two centers must be positioned within polygon B. 
 
A practical example is an artillery battery that can be divided 
into two platoons, each of which has an assigned area in which it 
operates. Each platoon operates in its assigned area with existing 
firing positions (Pj) for which needs to be set up supply spots 
(Ci) that will provide supplies for artillery units in firing 
positions. The firing positions have been identified, while the 
supply spots are to be constructed anew and must be situated 
individually for each platoon within their designated region. The 
precise geographical coordinates of the aforementioned supply 
spots and the corresponding firing positions they are intended to 
serve have not been explicitly delineated. Firing posts have a 
different supply prioritisation represented by weights and each 
supply spot shall have a capacity representing the maximum 
number of points it is able to provide supplies for. For this test is 
c=3 and p=25. 
 
In this test, a combination of all the previous conditions is 
applied. 
 
Formula [1] is utilized to determine the Euclidean distance 
between a center and any point in a two-dimensional space. 
Formula [6] displays the optimization function for the MFLP-
CWAR problem. Formula [8] demonstrates that it is equivalent 
to the total of weighted distances between each point and its 
designated centers. The objective is to minimize the objective 
function D while ensuring that the capacity of the center is not 
surpassed by identifying the optimal locations of c centers. In the 
context of two-dimensional space, the number of continuous 
optimization variables is 2c. 
 
2 Materials and methods 
 
This section describes the hardware used to calculate test tasks, 
the operating system, and applications. There is also a 
description of the methods used for optimization and auxiliary 
methods used in partial calculations. 
 
2.1 Hardware and software configuration 
 
Computational analyses were conducted on two distinct 
computer systems that possessed varying hardware 
configurations: 
 
HW 1 - CPU: AMD A10-9620P RADEON R5, 10 COMPUTE 
CORES 4C + 6G 2.50 GHz. Installed memory 8.00 GB RAM. 
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HW 2 - CPU: INTEL CORE i7-7700 3.60 GHz. Installed 
memory 32.00 GB RAM. Software configuration - 64-bit 
operating system, Windows 10 Enterprise LSTC, MS Excel 
2016, 64 bit, part of the Microsoft Office Suite, with the Solver 
add-in installed. 
 
2.2 Evolutionary method 
 
The evolutionary algorithm is classified as a component of 
Evolutionary Computations and is categorized among 
contemporary heuristic-based search techniques. Global 
optimization is a highly effective problem-solving technique for 
commonly encountered problems, owing to its adaptable 
characteristics and strong performance derived from 
Evolutionary Computation. This technology exhibits efficacy in 
numerous applications characterized by a high degree of 
complexity. The Solver add-in in Excel was utilized to compute 
all the enumerated test tasks. 
 
As per the reference (11), the fundamental characteristics of 
evolutionary algorithms can be delineated as follows. The initial 
stage involves the execution of a stochastic sampling procedure. 
The evolutionary algorithm is designed to sustain a group of 
potential solutions, known as a population. It is possible that a 
single individual or a group of individuals with similar 
objectives may be deemed as the optimal solution, while other 
members of the population may serve as exemplary models in 
distinct regions of the exploration space, where a superior 
resolution can be eventually discovered. The evolutionary 
algorithm introduces stochastic modifications or mutations to 
one or multiple individuals within the extant population, thereby 
generating a fresh prospect solution that may exhibit superior or 
inferior performance relative to the current population. The 
evolutionary algorithm endeavors to amalgamate components of 
extant solutions in order to generate a novel solution that 
incorporates certain attributes of each "parent". The process of 
combining elements from pre-existing solutions is achieved 
through a crossover operation. Ultimately, the evolutionary 
algorithm executes a selection procedure wherein the individuals 
deemed the "most suitable" within the population are able to 
persist, while those deemed the "least suitable" are excluded. In 
the context of a constrained optimization problem, the concept of 
"fitness" is contingent upon both the feasibility of the solution, 
as determined by its adherence to all constraints, and the 
objective function's value. The process of selection constitutes a 
crucial stage in the evolutionary algorithm's progression towards 
increasingly optimal solutions. 
 

The algorithm may be expressed in the form of pseudocode 
notation. 

START 

Generate the initial population 

Compute fitness 

REPEAT 

Population 

Mutation 

Crossover 

Selection 

Compute fitness 

UNTIL population has converged 

STOP 

This method allows for the configuration of convergence values, 
mutation frequency, base file size, random number, and 
maximum time without enhancement. The impact of alterations 
to these parameters on the computation is unspecified; hence, 
default values were maintained for all computations. Table 1 
presents the values of default parameters. 

Table 1. Parameters used for optimization in the Excel-Solver 
Parameter Value 
Max time Unlimited 
Iterations  Unlimited 
Constraint precisions 0,000001 
Convergence  0,0001 
Population size 100 
Random seed 0 
Mutation rate 0,075 
Maximum time without 
improvement 

30 sec 

Max subproblems Unlimited 
Maximum feasible solutions Unlimited 
Integer optimality 1% 

 
2.3 Metaheuristic method 
 
Previous studies have confirmed the effectiveness and outcomes 
of the MFLP approach through the utilization of metaheuristic 
techniques (1,2). The utilization of the metaheuristic approach, 
which is founded on the Simulated Annealing principle, has been 
employed to evaluate the efficacy of MS Excel in addressing the 
challenge of continuous multi-variable optimization. The 
principle being referred to draws inspiration from the annealing 
process utilized in metallurgy, which involves subjecting a 
material to controlled heating and cooling in order to mitigate 
any defects present. The authors implemented the calculation 
procedure using the C++ programming language. Further 
elaboration on the metaheuristic approach and the specific 
algorithm utilized can be found in prior scholarly investigations 
(1). 
 
2.4 Benchmark values 
 
 Table 2 displays the coordinates of the points P utilized in tests 
A and B. The point topology utilized in the artificial benchmark 
A has been intentionally structured in a unique manner, thereby 
enabling the anticipation or partial anticipation of a solution. 
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Figure 2. Benchmark A, B 
 
Table 2. Coordinates of points 

x y 

5 5 

15 5 

35 5 

45 5 

10 10 

5 15 

15 15 

35 15 

45 15 

40 10 

5 45 

15 45 

35 45 

45 45 

10 50 

5 55 

15 55 

35 55 

45 55 

40 50 

20 25 

30 25 

20 35 

30 35 

25 30 

 

Table 3 lists the terms used and their explanations. 

Table 3. Definitions of terms used 
Name of term Explanation 

Minimal Minimal value from set of 100 results 

Average Average value from set of 100 results 

Dif. ref-min Difference between reference and 
minimal value (%) 

Standard dev. Standard deviation for set of 100 results 

Avg. time Average time of computing one result in 
set of 100 results 

 
3 Results 
 
The results section provides a concise and objective summary of 
the experimental and computational data and presents the 
findings obtained from the conducted research. Data and results 
are shown in the form of tables and figures, followed by a 
comprehensive interpretation of the results. 
 
3.1. Results, TEST A 
 
Test tasks A are optimized on HW1, Test tasks A are used to 
verify the applicability of the method and to confirm the 
expected result. 
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3.1.1 TEST A-1 (5/25) 
 
The task of finding 5 centers for 25 points is solved first. The 
procedure is described in detail in Section IV. The optimization 
conditions and the result are in Table 4. 

Table 4. Results of test A-1 
Number of centers 5 
Number of points 25 
Total distance 141.4683926 
Center Number 

of 
assigned 
points 

x y 

1 5 40.00578353 10.00500703 
2 5 39.99977012 49.99824379 
3 5 9.994063198 50.00695307 
4 5 25.00818919 30.01828226 
5 5 10.00049883 10.00833797 

 
For this problem, it can be predicted that the correct solution will 
be the position of the centers in the middle of each group of five 
points. This prediction is confirmed by calculation and 
graphically shown in Fig. 3. 

Figure 3. Result of optimization test A-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2 TEST A-2 (3/25) 
The number of centers is reduced to 3 in this test. Points are 
assigned to the center using the MATCH and COUNTIF 
functions. The optimization conditions and the result are in 
Table 5. 

Table 5. Results of test A-2 
Number of centers 3 
Number of points 25 
Total distance 294.6004439 
Center Number 

of 
assigned 
points 

x y 

1 13 25.03041478 45.25362532 
2 6 10.11654392 10.18144429 
5 6 39.98807409 10.01568527 

 
For this problem, it can be predicted that the centers are moved 
and number of assigned points are changed. This prediction is 
confirmed by calculation and graphically shown in Fig. 4. 

Figure 4. Result of optimization test A-2 
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3.1.3 C.TEST A-3 (3/25 W) 
 
In this test, the weight is added to three points. The optimization 
conditions and the result are in Table 6. 

Table 6. Results of test A-3 
Number of centers 3 
Number of points 25 
Weights Points [5,5]; [45,5]; [25,30] have 

a weight of 3, the remaining 
points have a weight of 1. 

Total distance 341.7222172 
Center Number 

of 
assigned 
points 

x y 

1 5 7.173812421 7.138157584 
2 15 25.0017582 38.30947595 
3 5 42.63724447 7.365523656 

 
For this task, it can be predicted that the position of the centers 
will shift towards the points with weight 3 and a change in the 
number of points assigned to the centers. This prediction is 
confirmed by calculation and graphically shown in Fig. 5. 

Figure 5. Result of optimization test A-3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.4 TEST A-4 (3/25 C) 
 
Furthermore, the task of finding 3 centers for 25 points is solved, 
in which the maximum capacity is set for the centers - the 
capacity corresponds to the number of assigned points. The 
optimization conditions and the result are in the Table 7. 

Table 7. Results of test A-4 
Number of centers 3 
Number of points 25 
Capacity of centers All centers have a maximum 

allowed capacity (number of 
assigned points) 9. 

Total distance 331.3074116 
Center Number 

of 
assigned 
points 

x y 

1 8 12.37293583 44.08488544 
2 8 35.47962436 42.66568074 
3 9 33.91542714 6.917351073 

 
For this task can be predicted, that the position of the centers 
will shift and the number of points assigned to the centers will 
change. This prediction is confirmed by calculation and 
graphically shown in Fig. 6. 

Figure 6. Result of optimization test A-4 
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3.1.5 TEST A-5 (3/25 CW) 
 
This task combines the capacity of the centers and the weight of 
the points. The maximum capacity is set for the centers, i.e. the 
sum of the weights of the assigned points. Weight of the 
assigned points is the same as in test A-3 (3/25 W). The 
optimization conditions and the result are in Table 8. 

Table 8. Results of test A-5 
Number of centers 3 
Number of points 25 
Capacity of centers All centers have a maximum 

allowed capacity (sum of 
weights of assigned points) of 
11.  
Points [5,5]; [45,5]; [25,30] have 
a weight of 3, the remaining 
points have a weight of 1. 

Total distance 407.6103343 
Center Sum of 

weights of 
assigned 
points 

x y 

1 11 15.0877231 47.09785915 
2 9 41.08188208 15.27571591 
3 11 13.55289245 14.13270853 

 
For this task can be predicted, that the position of the centers 
will shift, and the number of points assigned to the centers will 
change. This prediction is confirmed by calculation and 
graphically shown in Fig. 7. 

Figure 7. Result of optimization test A-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Results, TEST B 
 
Test tasks B are optimized on HW1, Test tasks B are used to 
verify the applicability of the method and to confirm the 
expected result. 
To optimize the tasks in which the area in which the centers can 
be located is determined, it is necessary to add to the Excel 
workbook functions that can determine the mutual position of 
the center and the convex polygon. The output of these functions 
is the logical value TRUE if the center lies inside the polygon. 
By combining these values, different conditions for optimization 
can then be set. Benchmark A test tasks are used to verify the 
applicability of the method and to confirm the expected result. 
Two areas are prepared in the test tasks. The coordinates of the 
vertices of convex polygons A and B are given in Table 9. 
 
Table 9. Coordinates of convex polygons A and B 

Ax Ay Bx By 
15 55 5 5 
14 54 35 7 
21 35 30 25 
25 36 6 21 
45 52 2 10 
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3.2.1 TEST B-1 (3/25 CWA) 

This task combines center capacity and point weight and adds 
work with areas. The maximum capacity is set for the centers, 
i.e. the sum of the weights of the assigned points, all centers 
must lie in area A or B or both. The optimization conditions and 
the result are in Table 10. 

Table 10. Results of test B-1 
Number of centers 3 
Number of points 25 
Capacity of centers All centers have a maximum 

allowed capacity (sum of 
weights of assigned points) of 
11. 

Number of centers in 
areas A,B 

3 

Total distance 415.3432088 
Center Sum of 

weights of 
assigned 
points 

x y 

1 11 33.03465031 14.06651739 
2 9 9.304041817 15.26529007 
3 11 35.00187268 46.77105185 

 
For this task can be predicted that there will be a shift position 
change centers and the number of points assigned to the centers. 
This prediction is confirmed by calculation and graphically 
shown in Fig. 8. 

Figure 8. Result of optimization test B-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.2 TEST B-2 (3/25 CWR) 
 
This task combines center capacity and point weight and adds 
work with areas. The maximum capacity is set for the centers, 
i.e. the sum of the weights of the assigned points, all three 
centers must lie outside areas A and B. The optimization 
conditions and the result are in Table 11. 

Table 11. Results of test B-2 
Number of centers 3 
Number of points 25 
Capacity of centers All centers have a maximum 

allowed capacity (sum of 
weights of assigned points) of 
11. 

Number of centers in 
areas A,B 

0 

Total distance 426.1972904 
Center Sum of 

weights of 
assigned 
points 

x y 

1 11 24.36114487 29,68105772 
2 9 30.17352628 53,51005192 
3 11 36.25803366 6,988918277 

 
For this task can be predicted that there will be a shift position 
change centers and the number of points assigned to the centers. 
This prediction is confirmed by calculation and graphically 
shown in Fig. 9. 

Figure 9. Result of optimization test B-2 
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3.2.3 TEST B-3 (3/25 CWAR) 
 
This task combines center capacity and point weight and adds 
work with areas. The maximum capacity is set for the centers, 
i.e. the sum of the weights of the assigned points, one center 
must lie into area A and two into area B. The optimization 
conditions and the result are in Table 12. 

Table 12. Results of test B-3 
Number of centers 3 
Number of points 25 
Capacity of centers All centers have a maximum 

allowed capacity (sum of 
weights of assigned points) of 
11. 

Number of centers in 
areas A,B 

Area A - 1, area B - 2 

Total distance 414.918009 
Center Sum of 

weights of 
assigned 
points 

x y 

1 9 8.738383737 14.06651739 
2 11 32.98934049 15.26529007 
3 11 35.43413036 46.77105185 

 
For this task can be predicted, that there will be a shift position 
change centers and the number of points assigned to the centers. 
This prediction is confirmed by calculation and graphically 
shown in Fig. 10. 

Figure 10. Result of optimization test B-3 
 
4 Discussion & Conclusion 
 
This article follows the original research on the possibilities of 
solving the MFLP problem using MS Excel software. The 
capabilities of solving the MFLP tasks using MS Excel were 
verified by metaheuristic method and published in previous 
research (1,2) including the influence of HW equipment and the 
number of repetitions of tasks on the accuracy of the results. The 
aim of this article was to expand the original research and to 
demonstrate the possibilities of solving more sophisticated 
MFLP tasks. The conditions for the weights of branches, the 
capacity of centers and their combinations were newly included 
in the calculation of the location of centers. Furthermore, the 
conditions for the location of the center in the space and 
therefore whether or not the center should lie in a given polygon, 
which is determined by semiplanes, were included in the 
calculation. The last complex task solves the combination of all 
the above mentioned conditions. The application of this method 

was demonstrated in the military environment in supporting the 
commander's decision-making process in planning the 
deployment of logistical support for artillery units. All tasks 
indicate the expected results, thus the conditions were fulfilled, 
which were set out in the assignment. This method has its 
liabilities, which were explained in more detail in previous 
research. These liabilities result from the iterative process of 
generating random numbers and subsequently obtaining the 
resulting value of the location of the centers. Naturally, the 
evolutionary calculation, as Excel itself refers to it, is also 
challenging for HW equipment, which has an influence on the 
resulting values. For these reasons, 100 calculations were 
performed for each test to partially eliminate these effects. 
Assuming knowledge of these liabilities, it is then possible to 
obtain valid results, which can be in close proximity to the 
optimal solution. The article has the ambition to show the 
advantage of the solution of the optimization task MFLP with 
the help of the widely available Microsoft Excel software, where 
it is relatively easy to implement the limiting conditions of the 
solution and can be used in common practice. 
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