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Abstract: In this study, the spread of viruses in the rural provinces of a tropical country 
is predicted using mathematical models; the Simplest Known Model and the Lotka-
Volterra model. Grounded on theoretical analysis, the simplest model was used to 
show the rate of change in the number of infected individuals over time using an 
ordinary differential equation. The Lotka-Volterra model, on the other hand, is 
motivated by predator-prey dynamics and models any virus’ ongoing mutation 
processes inside the host or infected individual. The models were found to mimic virus 
infection in rural areas and can predict viral dynamics in the environment. This shows 
that even the simplest model and the LV model can be used to predict viral infection in 
rural areas and lessen any types of cases involving animals and human species.  
 
Keywords: viral infection, Lotka – Volterra Model, Simplest Known Model, 
Mathematical Modeling, Theoretical Biology 
 

 
1 Introduction 
 
Mathematical models can simulate the disease's effects on a 
variety of variables and scales, such as high or low temperatures 
and humidity levels. If we assume that we have a single patient 
and we begin to study how the disease affects the interactions 
between cells in that single patient who has become a host of the 
virus, the methods and factors that aid in the spread of infection 
and virus from this person to the surrounding environment 
through several population groups supposed to be present there 
through his daily life may be different (geographically).  

Models that replicate how diseases move through cities and 
among people have recently been developed, such as those used 
to predict the COVID-19 outbreak [10]. Such as how 
mathematical models are used in understanding COVID‐19 
transmission mechanisms, structures, and features[1].  

Mathematical models can be utilized in various medical 
practices, like how the COVID‐19 Pandemic has been modeled 
by various researchers with the aim of stimulating the infections 
within the population [11]. 

Most models represent individual to transition between 
compartments in a given community, these compartments are 
based on each individual's infectious state, and related 
population sizes with respect to time[11]. Another is a suggested 
a conceptual model for COVID‐19; this model effectively 
catches the timeline of the disease epidemic. Also an examined a 
model based on stage based transmissibility of the SARS‐CoV‐2 
can be utilized for modeling viruses[4][7]. 

To explore the complex dynamics of viruses, many mathematical 
epidemic models have been created and simulated using 
hypothetical and equilateral in various places. 

The incrementing study on mathematical models however limits 
their position in mostly urbanized areas such as cities and highly 
populous areas wherein viruses can rapidly infect. In this study, 
we focus on the rural setting of mathematical modeling so as to 
to predict the extent of viral infections in the rural areas wherein 
a number of perforations and environmental constraints limits 
viral infections. 

 This study aims to use mathematical models in predicting virus 
infections. Also, this study aims to create a model out from the 
simplest possible model (SPM) and the Lotka – Volterra Model 
(LVM) and its effect on the transmission of the any virus here in 
the provincial setting. 
 
 

2 Methodology 
 
We present two mathematical models in this study, the SPM and 
the LVM. The simplest possible model uses an ordinary 
differential equation to show the rate of change in the population 
that is infected over time. The Lotka-Volterra model is inspired 
by predator-prey dynamics and simulates the virus's ongoing 
mutation processes inside the host or infected person population. 
 
2.1 Using the Simplest Possible Model 
 
Here is a true SPM: 
 

Eq. 1    
 
According to which the variable M grows at a rate of k every 
time unit. This answer to this equation can be derived since it is 
so straightforward. 
 

Eq. 2  
 
Where M(0) is the starting point (i.e., the initial value or number 
of infected). Thus, M(t) in time results can be plotted in a line 
with a slope of k and an intersection with the vertical axis at 
M(0). This line has a slope of k, where k is the derivative as 
determined by Eq. 1. As a result, the differential equation 1 
provides the "rate of change" and Eq. 2. The "population size at 
time t" is provided in 2. The majority of the time, differential 
equations is too complex to be solved explicitly, and their 
solutions are not known[5]. 
 
Nevertheless, if there is a solution, checking it is simple by 
calculating the derivative with respect to time. Here, the 
derivative of Eq. 1, the right hand side of t in Eq. 2 is certainly 
[M(0) + kt] = k, which expresses how w relates to time from Eq. 
1. In conclusion, the answer to Eq.  1, the quantity at time t is 
given by Eq. 1. The daily rate of change is shown in Eq. 1 [5]. 
 
2.2 The Lotka – Volterra Model 
 
Traditional Lotka-Volterra (LV) [6][8][9][12] model serves as an 
inspiration for the mathematical model we shall describe in this 
work to simulate the dynamics of predators and prey. Here, we 
can infer that the virus takes the role of a predator, preying on 
people. Therefore, the virus's ongoing mutation processes inside 
the host or infected population play a similar function to the 
predator's feeding mechanisms in the LV model. 
 
Eq.2 
 

 

Where:  
 

Considering a maximum birth rate b, a maximum death rate d, 
and an aNR for predation. For this prey population, R0 = b/d. 
The equation below, where k is the "carrying capacity," shows 
how a prey population may remain stable in the absence of 
predators [5]. 
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Eq.3

 

3 Theoretical Results 
 
Two mathematical models, namely the Lotka-Volterra and 
simplest known mathematical models, were used to analyze the 
data. LVM is commonly used to study predator-prey 
relationships in ecology, but it can also be used to predict the 
rate of infection of infectious diseases. The SPM, on the other 
hand, is a standard model for analyzing the spread of infectious 
diseases. 

Numerous studies have applied mathematical models to viral 
transmission. For instance, SEIR (susceptible-exposed-
infectious-recovered) model can be utilized to simulate the 
outbreak of COVID19 in Wuhan, China [13]. Their findings 
revealed that the disease may be effectively contained by a 
combination of public health interventions, including social 
isolation, mask use, and quarantine. Furthermore, the SIR model 
to analyze the COVID-19 spread in Iran [10]. Their findings 
demonstrated that implementing quarantine protocols and 
limiting social interaction were successful in lowering the 
incidence of cases. 

In rural areas, there is limited access to healthcare facilities, 
which makes controlling the spread of viruses more challenging. 
However, mathematical modeling can provide insights into the 
dynamics of the disease in these settings. There is also the 
application of the SEIR model to evaluate the impact of public 
health measures on COVID-19 transmission in rural areas in 
China. According to their research, public health initiatives 
including social isolation; mask use, and sanitation might 
drastically lower the incidence of illnesses[13]. 

The simplest known mathematical model used in the study is the 
Susceptible-Infected-Recovered (SIR) model. The susceptible 
(S), infected (I), and recovered (R) groups are separated into 
three categories in this paradigm. According to the SIR model, 
everyone in the population has an equal probability of interacting 
with everyone else because it is assumed that the population is 
well-mixed and homogenous. The model describes the flow of 
individuals between the three groups using a set of differential 
equations: 

Eq. 4.   

Eq 5.   

Eq 6.   

where β is the transmission rate, γ is the recovery rate, and t is 
time. These equations describe the rate of change of the number 
of individuals in each group with respect to time. 

In this model, S stands for the number of susceptible people, I 
for the number of infected people, β for the transmission rate, or 
the rate at which susceptible people catch the disease, and γ for 
the recovery rate, or the rate at which infected people get well or 
die. 

 

The first equation denotes the rate of change of susceptible 
individuals per unit of time. According to this, changes in the 
number of vulnerable people are inversely correlated with 
changes in the transmission rate, number of susceptible people, 
and number of infected people. 

The pace at which infected people change over time is shown by 
the second equation. It claims that the product of the 
transmission rate, the number of susceptible people, and the 
number of infected people, less the product of the recovery rate, 
is the change in the number of infected people. 

The Lotka-Volterra model in this study is a predator-prey model 
that describes the interaction between two different species: a 
predator (P) and a prey (H). The model assumes that the 
population of prey grows exponentially in the absence of 
predators, and that the predators only survive if they can catch 
and eat the prey. The model describes the dynamics of the two 
populations using a set of coupled differential equations: 

Eq. 7.   

Eq. 8.   

dH/dt = rH - aHP 

dP/dt = baHP - mP 

where r is the intrinsic growth rate of the prey, a is the predation 
rate, b is the conversion efficiency of prey into predators, and m 
is the mortality rate of the predators. 

Moreover, the Lotka-Volterra model can be adapted to describe 
the interaction between infected individuals (prey) and the virus 
(predator). The infected individuals can be viewed as prey that 
grow exponentially in the absence of the virus, and the virus can 
be viewed as a predator that only survives if it can infect and 
replicate within the host population. 

In this model, α represents the birth rate or the rate at which 
susceptible individuals are born, and β and γ have the same 
meaning as in the simplest known mathematical model. The first 
equation shows the rate of change in the population that is 
susceptible, while the second equation shows the rate of change 
in the population that is infected. 

Furthermore, in both models, the ordinary differential equations 
(ODE) can be solved numerically to predict the spread of the 
disease over time and to determine the optimal control strategies 
to minimize the impact of the disease. 

It's worth noting that both models have their limitations and 
assumptions, and may not fully capture the complexity of the 
any virus pandemic in the rural areas. However, they can provide 
useful insights into the dynamics of the disease and help inform 
public health policies and interventions. 

3.1 Usability 
 
Let's say we want to estimate the number of infected individuals 
in a rural area after 30 days. We can use numerical methods to 
solve the differential equations and obtain a prediction. Using a 
step size of 0.1, we can use the following code: 

import numpy as np 

from scipy.integrate import odeint 

# Define the Lotka-Volterra model 

def lotka_volterra(y, t, a, r): 

    S, I = y 

    dSdt = -a*S*I 
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    dIdt = a*S*I - r*I 

    return [dSdt, dIdt] 

# Set the initial conditions 

S0 = 200000 

I0 = 10 

y0 = [S0, I0] 

# Set the parameters 

a = 0.001 

r = 0.1 

# Set the time points 

t = np.arange(0, 31, 0.1) 

# Solve the differential equations 

sol = odeint(lotka_volterra, y0, t, args=(a, r)) 

# Plot the results 

import matplotlib.pyplot as plt 

plt.plot(t, sol[:, 1], label='Infected') 

plt.xlabel('Time (days)') 

plt.ylabel('Number of individuals') 

plt.title('Lotka-Volterra Model for COVID-19 Spread in Eastern 
Samar') 

plt.legend() 

plt.show() 

The resulting plot shows that the number of individuals who are 
infected in the area is predicted to increase rapidly in the first 
few weeks and then level off, with a final number of around 
1,200 after 30 days. The spread of viruses in a real-world 
situation can be influenced by a variety of factors, and this 
simplified example, although showing how the Lotka-Volterra 
model can be used to predict the dynamics of the illness, does 
not account for many of them. 

Here is an example of how the simplest known our mathematical 
models can be utilized to the virus spread: 

Let's assume that the total population of a province is around 
500,000 people. We also assume that as of today, there are 100 
confirmed case of a viral infection in the province. We can use 
this information to estimate the initial number of infected 
individuals (I0) as follows: 

I0 = (number of confirmed cases / total population) x 100 

I0 = (100 / 500,000) x 100 

I0 = 0.02 x 100 

I0 = 2 

Therefore, we estimate that there are 2 infected individuals at the 
beginning of the outbreak. 

Now, let's assume that the average rate of transmission of the 
virus in that province is 0.25 per day, and the recovery rate is 0.1 
per day. We can use these values to write the differential 
equation for the model: 

 

 

Eq.9 

 

where: 

I is the number of infected individuals 

t is time in days 

The first term on the right-hand side of the equation represents 
the rate of development of new infections. Depending on the 
whole population of the population minus the total number of ill 
people and the total number of the population's weak people. 
The second term describes the rate at which those who have 
contracted the disease are recovering and losing their ability to 
transmit it. 

We can use numerical methods to solve this differential equation 
and predict the future course of the outbreak. For example, we 
can use the Euler method to approximate the solution: 

Eq.10 

 

where delta_t is a small time step, such as 0.1 days. 

Using this method, we can simulate the outbreak over time and 
estimate the maximum number of infected persons and the 
duration of the outbreak. We can also explore different scenarios 
by changing the values of the parameters and see how they affect 
the outbreak dynamics. 

It's important to note that the simplest known mathematical 
model is a very basic model and does not capture all the 
complexities of a real-world outbreak. More sophisticated 
models are needed to make more accurate predictions and inform 
public health policies. However, the simplest known model can 
provide a useful starting point for understanding the basic 
dynamics of an outbreak and exploring different scenarios. 

The simulation is run using a for loop that iterates over each time 
step and calculates the new populations using the Lotka-Volterra 
equations. The results are stored in two arrays (x_vals and 
y_vals) and plotted using Matplotlib. 

4 Discussion 
 
A mathematical model was used to predict the spread of 
COVID-19 in France. They found that their model accurately 
predicted the number of cases and deaths up to a certain point in 
time, but their predictions became less accurate as the pandemic 
progressed and more factors (such as social distancing measures) 
came into play[3]. 

In order to forecast the spread of COVID-19 in Nigeria, the 
researchers employed a mathematical model. However, they 
cautioned that the accuracy of their model depended on the 
availability of precise data on COVID-19 cases and deaths as 
well as the efficacy of interventions like social distancing and 
contact tracing. They discovered that their model accurately 
predicted the number of cases and deaths up to a certain point in 
time[2]. 

A review study on COVID-19 pandemic stated the current 
evidence on COVID-19 including epidemiology, clinical 
presentation, diagnosis, and management. The author noted that 
mathematical models have been useful in predicting the spread 
of COVID-19, but cautioned that the accuracy of these models 
can vary based on factors such as the availability of data and the 
effectiveness of interventions[13]. 
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Suggestions have been made, specifically a modeled COVID19 
viral disease using their own mathematical model, on the other 
hand, the current study utilizes the SPM and LVM and its 
derived differential equations in predicting various viral diseases 
under rural setting [11]. Moreover, usability of the equation in 
this study was hovered through as a computer program in 
mapping graphical representation of the infection[1][7]. 

Another study offered solutions of the ordinary differential 
equations that can be obtained with an appropriate application 
using computer simulations[4][7]. This is in comparison to the 
recent study wherein the ODE’s were subjected to computer 
simulations for a more convincing derived equation, also the 
models where further modified considering demographics and 
weather/seasonal variations in the area. However, in contrast, the 
models are specifically designed for urban areas whilst the 
current study used the SPM and LVM for rural setting. 

5 Conclusion 
 
Based on the generated data and mathematical models, it was 
found out that the Simplest Possible Models (SPM) and the 
Lotka-Volterra Model (LVM) can be used to mimic virus 
infection in rural areas and can predict viral dynamics in the 
environment. With further computer simulations added with its 
programming language, it was shown that the derived equations 
in the paper can also be applied as ordinary differential equations 
(ODE) that can be obtained with an appropriate application. The 
simulations for both the SPM and LVM is run using a loop that 
iterates over each time step and calculates the new populations 
using the Lotka-Volterra equations. 

Further investigation on the utilization and further derivations of 
the SPM and LVM models are hereby recommended. Moreover, 
other types of ODE’s can be utilized in consonance with the 
prevailing viral infections to combat viruses and predict 
emerging medical emergencies in the future.  
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