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Abstract: Computer-assisted disease diagnosis is cost-effective and time-saving, 
increasing accuracy and reducing the need for an additional workforce in medical 
decision-making. In our prior research, we trained, tested, and compared the 
accuracies of nine optimizable classification models to diagnose and predict eight 
anaemia types from Complete Blood Count (CBC) data. This study aimed to improve 
these classification models by oversampling the original imbalanced dataset with four 
algorithms related to the Synthetic Minority Over-sampling Technique (SMOTE). The 
results showed that the validation accuracy increased from 99.22% (Ensemble model) 
to 99.57% (Tree model), and most importantly, the False Discovery Rate (FDR) for 
the anaemia type with the highest FDR decreased from 23.1% to 1.5%. 
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1 Introduction 
 
Artificial intelligence, deep learning, and machine learning are 
nowadays used in various fields [1–4] to recognise patterns in 
data, classify data and predict some outputs. Using modern 
information technologies in healthcare, driven by artificial 
intelligence, can improve medical diagnostics, reduce human 
errors and enhance timely detection [5]. Artificial intelligence, 
machine learning and deep learning techniques can be used in 
healthcare, for example, to predict cardiovascular disease [6,7] 
or diabetes [8,9] or to diagnose cancer [10]. Our research focuses 
on diagnosing and predicting eight anaemia types from 
Complete Blood Count (CBC) data. In prior research, we trained 
and tested nine optimisable classification models to predict 
anaemia types. Even though our best classification model 
reached 99.22% overall validation accuracy, the False Discovery 
Rate (FDR) was very high, 23.1%, for the Leukaemia with the 
thrombocytopenia category [11]. In the research presented in this 
paper, our primary goal was not only to improve the overall 
validation accuracy but, most importantly, to decrease the FDR 
for all the categories and, with that, to develop a more reliable 
machine learning classification model for anaemia diagnosis. To 
reach our goal, first of all, we oversampled the original 
imbalanced dataset using Synthetic Minority Over-sampling 
Techniques (SMOTE) [12–15]. Next, we trained and tested the 
machine learning classification models with the new datasets and 
compared the obtained results. Finally, we examined the 
classification models with the highest accuracies more deeply 
and developed a MATLAB app for predicting anaemia type from 
CBC data. 
 
2 Related Research 
 
Anaemia is a condition marked by inadequate red blood cells or 
haemoglobin, which decreases oxygen delivery to the body's 
tissues. It is estimated that around 40% of children aged 6 to 59 
months, 37% of pregnant women, and 30% of women between 
the ages of 15 and 49 worldwide are impacted by anaemia [16]. 
Proper diagnosis and classification of anaemia are crucial for 
effective treatment. Historically, this process relies on CBC tests 
and manual evaluations by healthcare professionals, which can 
be time-consuming and vary due to subjective interpretations. 
However, recent advancements in data science and machine 
learning open up new avenues for enhancing the accuracy and 
efficiency of anaemia diagnosis [17]. 
 

Bahadure et al. [5] focused on identifying anaemia and its 
subtypes using deep learning and YOLO object detection 
algorithms to analyse microscopic images of blood samples. 
They highlighted the significance of quality metrics and feature 
extraction for ensuring precise diagnosis. Their research 
achieved an accuracy of 97.60% in identifying anaemia and its 
subtypes on 448×448 resolution images. Similarly, microscopic 
images of blood samples were used in research conducted by 
Dalvi and Vernekar [18]. First, they assessed 13 geometric 
features of each red blood cell; afterwards, they compared five 
ensemble methods to diagnose anaemia. The results showed that 
the best performance (overall accuracy: 92.122%, specificity: 
95.082%, recall: 79.88%, precision: 80.134%) was reached with 
the Stacking ensemble method, which combined K-Nearest 
Neighbours (KNN) and Decision Tree as base learners and 
Naïve Bayes as stacking learner. 
 
In a study by Airlangga [17] the researchers used CBC data to 
diagnose anaemia and compare the performance of various 
machine learning classification models. The results showed that 
the Decision Tree classifier achieved the highest balanced 
accuracy score of 94.17%, outperforming more complex 
ensemble methods. Aditya et al. [19] used CBC results as well to 
detect anaemia. They compared the accuracies of four machine 
learning models. The highest accuracy, 99.22%, was achieved 
with the Random Forest using the Staking CatBoost algorithm. 
Similarly, CBC results were used in a research by Faraj [20], 
where six classification algorithms were used on a dataset 
containing records of 180 women to diagnose anaemia. The 
highest accuracy, 97.78%, was reached with the Logistic Model 
Tree algorithm. Also, CBC data was used in a study by 
Pullakhandam and McRoy [21]. They reached 97% accuracy 
with six classification models: Logistic Regression, Random 
Forest, K-Nearest Neighbours (KNN), Gradient Boosting, and 
XGBoost. The analysis also showed that among all predictors, 
the low blood level of haemoglobin, the higher age, and the 
higher red blood cell distribution width were the most critical. 
Rahman et al. [22] also used the attributes of CBC data to 
diagnose anaemia. They used gender, age, haemoglobin, count 
of red blood cells (RBC), packed cell volume (PCV), mean 
corpuscular volume (MCV), mean corpuscular haemoglobin 
(MCH), and mean corpuscular haemoglobin concentration 
(MCHC) as input parameters. They compared the results of 11 
machine learning algorithms; the highest accuracy, 95%, was 
reached with the Logistic Regression classification model. Vohra 
et al. [23] also used CBC data to diagnose anaemia and classify 
it into mild,  moderate, and severe categories. Except for the 
original dataset, they used a feature-selected dataset, an 
oversampled dataset, and a feature-selected and oversampled 
dataset to train and test six machine learning classification 
models. For all models, both the hold-out experiment method 
and the 10-fold cross-validation method were used, and finally, 
the obtained results were compared. The highest accuracy, 
99.35%, was reached with Multilayer Perceptron, using the hold-
out experimental method and the dataset oversampled with 
SMOTE. Yıldız et al. [24] used hemogram data together with 
general information (such as age, sex, chronic diseases, and 
symptoms) to diagnose twelve different types of anaemia. They 
analysed the results of four machine learning algorithms trained 
and tested on the given dataset. The highest accuracy, 85.6%, 
was achieved using the Bagged Decision Trees classification 
model. Kovačević et al. [25] used the KNN machine learning 
algorithm to predict anaemia. They used gender, age, presence of 
chronic disease, iron, mean corpuscular volume (MCV), folic 
acid, haemoglobin, ferritin, erythrocyte count, and vitamin B12 
as input parameters to diagnose and classify three types of 
anaemia with 98.4% accuracy. The study's results also showed 
that the most relevant parameter was the MCV. 
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3 Materials and Methods 
 
In this research, we used a publicly available dataset containing 
CBC data downloaded from Kaggle [26]; and MATLAB 
R2024b software [27] for data exploration, oversampling, 
training and testing several machine learning classification 
models, and calculating the final models' feature importance. 
 
3.1 Dataset 
 
The original dataset [26] contained 1281 observations, 14 
predictors from CBC data, and the diagnosis as a categorical 
target variable. The predictors were the following: the amount of 
haemoglobin (HGB), the number of platelets (PLT), the count of 
white blood cells (WBC), the count of red blood cells (RBC), the 
haematocrit test (HCT), the mean corpuscular volume (MCV), 
the mean corpuscular haemoglobin (MCH), the mean 
corpuscular haemoglobin concentration (MCHC), the variability 
in platelet size distribution in the blood (PDW), the procalcitonin 
test (PCT), the percent of lymphocytes (LYMp), the percent of 
neutrophils (NEUTp), the number of lymphocytes (LYMn), and 
the number of neutrophils (NEUTn). The categorical target 
variable of the dataset contained nine categories: one for healthy 
patients and eight for different types of anaemia. The anaemia 
types were the following: iron deficiency anaemia, leukaemia, 
leukaemia with thrombocytopenia, macrocytic anaemia, 
normocytic hypochromic anaemia, normocytic normochromic 
anaemia, other microcytic anaemia, and thrombocytopenia. 

We divided the original dataset into a training set (90% of 
observations) and a test set (10% of observations). The training 
set was used to train classification models and to develop four 
new training sets using SMOTE-related algorithms (Fig. 1). The 
test set was used to test all our trained models on previously 
unseen data. 
 
3.2 Data Exploration 
 
Exploring datasets visually with many predictors can be 
challenging. Nevertheless, Principal Component Analysis (PCA) 
helps to decrease dimensionality and enhances interpretability 
while minimising the loss of information. This multivariate 
method is used to analyse datasets with inter-correlated 
quantitative dependent variables. The main goal of PCA is to 
extract important information from the dataset, which is then 
represented as a set of new uncorrelated variables that 
sequentially maximise variance. Furthermore, PCA uncovers 
patterns of similarity among the observations and variables, 
enabling these relationships to be illustrated as points on maps 
[28,29]. We used PCA to generate two principal components 
from 14 predictors and visualise these components in a 2D 
graph. This method allowed us to visually observe which target 
categories are similar or different from others. 

3.3 Oversampling 
 
An imbalanced dataset, where the distribution of classes is not 
uniform, can pose significant challenges in machine learning, 
particularly when certain categories have very few samples. As a 
result, classification algorithms struggle to predict these 
underrepresented categories accurately. A straightforward 
solution to this issue is to increase the number of records in the 
minority classes [30]. Traditionally, oversampling techniques 
involve duplicating samples from minority classes, such as 
Random Over-sampling (ROS) [31]. A widely used method is 
the Synthetic Minority Over-sampling Technique (SMOTE), 
which creates new synthetic samples by interpolating between 
existing minority-class samples [12]. This method has influenced 
various sampling techniques, including Borderline SMOTE [14], 
Safe-level SMOTE [15], and Adaptive Synthetic Sampling 
(ADASYN) [13]. In the research presented in this paper, we 
used four SMOTE-related algorithms implemented in MATLAB 
[32] to oversample the original training set, expanding every 
minority class in the original dataset to 130 samples (Fig. 1). We 
then used the original and the new training sets to train several 
classification models and analyse the results. 

 

 
Figure 1: The training sets and the test set used in the research 
 
3.4 Classification 
 
Classification is a supervised machine learning technique that 
categorises data into predefined classes. In our research, we used 
several classification models to diagnose and predict eight types 
of anaemia. To accomplish this, we used the Classification 
Learner app [33] available in MATLAB R2004b software [27]. 
The models we employed include Ensemble, Tree, Support 
Vector Machine (SVM), Efficient Linear, Neural Network, 
Kernel, K-Nearest Neighbours (KNN), Naïve Bayes, and 
Discriminant analysis. We trained these models using the 
original and four oversampled training sets. To optimise the 
hyperparameters of each model, we applied Bayesian 
optimisation. Throughout the training process, we implemented 
10-fold cross-validation to mitigate the risk of overfitting. 
Finally, we evaluated the performance of all models using an 
unseen test set. 
 
3.5 Feature Importance 
 
Although machine learning has significant potential to enhance 
products and services by quickly and accurately predicting 
outcomes from data, computers typically do not provide 
explanations for their predictions. To interpret these machine 
learning models, model-agnostic methods can be employed 
[34,35]. In this study, we calculated the permutation feature 
importance and Shapley importance for the two best 
classification models to understand how they operate. 
 
4 Results 
 
This section presents the study's findings, highlighting insights 
gained from data analysis and model evaluation. First, the data 
exploration results are summarised, including visual 
representations of the original and an oversampled training set 
projected onto two principal components. Next, the performance 
of various classification models is compared to evaluate their 
predictive accuracy. The analysis then identifies the most 
important features influencing predictions in the top two models. 
Finally, a MATLAB application is introduced as a practical tool 
for predicting different types of anaemia, demonstrating how the 
developed models can be applied in a user-friendly environment. 
 
4.1 Data Exploration 
 
First, we visualised the number of observations in the original 
training set for each target category. As we can see on the bar 
chart (Fig. 2), some target categories contain only a few 
observations. Using such an imbalanced dataset for training 
classification models might result in a high False Discovery Rate 
(FDR) for these categories, making the trained models unreliable 
for predicting them. To address this issue, we decided to 
generate oversampled training sets using SMOTE-based 
algorithms. We aimed to improve the classification models' 
accuracies and reduce the FDR for the most problematic 
categories. 
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Figure 2: Number of observations by diagnostic categories in the 
original training set (N=1,153) 
 
The dataset included 14 predictors, making visualisation only 
possible by using a technique to reduce its dimensions. 
Therefore, we opted for PCA to represent the target classes 
visually in a 2D graph. Fig. 3 displays the map of the two 
principal components for each category. Some classes are more 
distinguishable, while others, particularly the minority classes, 
are not visible in the graph. 
 

 
Figure 3: Original training set (N=1,153) projected onto two 
principal components 
 
We oversampled the original training set by increasing the 
number of samples in the minority classes to 130 for five 
categories using four SMOTE-based algorithms [32]. The 
oversampled categories are Leukemia, Leukemia with 
thrombocytopenia, Macrocytic anaemia, Other microcytic 
anaemia, and Thrombocytopenia. While the original training set 
contained 1,153 observations, each of the oversampled training 
sets contained 1,615 samples. Fig. 4. shows the training set 
oversampled with SMOTE [12] projected onto two principal 
components. When comparing Fig. 3 to Fig. 4, we can observe 
the impact of SMOTE on the class distribution within the 
training set, emphasising its role in addressing class imbalance. 
As a result, more categories are distinguishable on the map; 
however, some observations from different categories remain 
close to one another. 
 

 
Figure 4: Oversampled (SMOTE) training set (N=1,615) 
projected onto two principal components 
 
4.2 Comparison of Classification Models 
 
After data exploration, we trained nine optimisable classification 
models first with the original training and then with the four 
oversampled training sets. During the training, 10-fold cross-
validation was used. Tab. 1 summarises the validation accuracies 
of the trained models for each training set. As we can see in the 
table, the highest validation accuracies, 99.57% and 99.50%, 
were reached with Tree and Ensemble classification models that 
were trained on the training set oversampled with the standard 
SMOTE algorithm. 
 
Tab. 1: Validation accuracies (%) of classification models on 
original (N=1,153) vs. four oversampled (N=1,615) training sets 

Model 

Training Set 

Original SMOTE ADASYN 
Border- 

line 
SMOTE 

Safe- 
level 

SMOTE 
Ensemble 99.22 99.50 99.44 99.44 99.38 
Tree 99.05 99.57 99.20 99.26 99.32 
SVM 91.76 94.61 94.67 94.06 94.67 
Efficient Linear 89.51 92.38 92.69 92.57 92.63 
Neural Network 88.03 94.55 93.37 94.67 82.54 
Kernel 81.35 87.55 87.31 86.87 88.05 
KNN 75.80 85.20 84.27 86.50 85.14 
Naïve Bayes 67.30 71.02 72.76 73.13 73.19 
Discriminant 54.38 59.94 60.50 60.06 58.02 

 
After completing the training, we evaluated each classification 
model using an unseen test set. The test accuracies obtained are 
summarised in Tab. 2. For our best models, which achieved the 
highest validation accuracies, the test accuracy reached 100%, 
meaning they correctly classified every observation in the test 
set. 
 
Tab. 2: Test accuracies (%) of trained classification models 

Model 

Training Set 

Original SMOTE ADASYN 
Border- 

line 
SMOTE 

Safe- 
level 

SMOTE 
Ensemble 100.00 100.00 100.00 100.00 98.44 
Tree 100.00 100.00 100.00 100.00 100.00 
SVM 91.41 92.97 92.19 95.31 94.53 
Efficient Linear 94.53 93.75 92.97 93.75 92.97 
Neural Network 89.06 93.75 91.41 96.09 84.38 
Kernel 82.81 82.03 84.38 81.25 84.38 
KNN 77.34 74.22 75.78 79.69 71.09 
Naïve Bayes 67.19 69.53 67.19 58.59 70.31 
Discriminant 52.34 53.12 54.69 53.91 53.91 

 
In the following part of this paper, we will focus solely on our 
two best models: the Tree and Ensemble classification models. 
We will analyse their results in greater detail. Although these 
models achieved impressive overall validation and test 
accuracies, we still do not know how they classify observations 
within each category. Therefore, we should examine their 
confusion matrices. Fig. 5 displays the validation confusion 
matrices of the Ensemble and Tree models. The figure indicates 
that only one or two observations were misclassified in most 
categories. 
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Figure 5: Validation confusion matrices of Ensemble and Tree 
classification models trained on the oversampled SMOTE 
training set 
 
Fig. 6 shows the test confusion matrices for our best models. 
Both machine learning models correctly classified all 
observations in every category in the test set. 
 

 
Figure 6: Test confusion matrices of Ensemble and Tree 
classification models trained on the oversampled SMOTE 
training set 
 
The False Negative Rate (FNR) refers to the percentage of true 
positive cases a model mistakenly identifies as negative. It 
captures the rate of missed detections in the model's predictions. 
Tab. 3 summarises the FNR from the validation confusion 
matrices for our best models, which were trained on original and 

oversampled training sets. The data in the table shows that when 
we used the original training set with the Ensemble model, the 
categories with higher FNR were Macrocytic anaemia (FNR: 
6.2%) and Other microcytic anaemia (FNR: 5.7%). In the case of 
the Tree model trained on the original training set, the categories 
that posed problems included Leukemia with thrombocytopenia 
(FNR: 10.0%), Macrocytic anaemia (FNR: 6.2%), and Other 
microcytic anaemia (FNR: 7.5%). However, when we applied 
the oversampled SMOTE training set, the FNR for all 
problematic classes dropped below 1.0% for both classification 
models. 
 
Tab. 3: False negative rates (%) in validation confusion matrices 
of Ensemble and Tree models trained on original vs. 
oversampled training sets 

Training Set, 
Model 

True Class 
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Original, 
Ensemble 0.3 0.6 0.0 0.0 6.2 0.4 0.8 5.7 0.0 

Original, 
Tree 0.3 0.6 0.0 10.0 6.2 0.4 0.8 7.5 0.0 

SMOTE, 
Ensemble 0.3 1.2 0.8 0.0 0.0 0.4 0.8 0.8 0.0 

SMOTE,  
Tree 0.3 1.2 0.0 0.0 0.0 0.4 0.8 0.8 0.0 

ADASYN,  
Ensemble 0.3 0.6 0.0 0.0 0.0 0.4 0.8 3.1 0.0 

ADASYN, 
Tree 0.7 1.2 0.0 0.0 0.0 0.4 0.8 3.1 1.5 

Borderline SMOTE, 
Ensemble 0.3 1.8 0.0 0.0 0.8 0.8 0.8 0.0 0.0 

Borderline SMOTE, 
Tree 0.3 1.2 0.0 0.0 0.0 0.4 0.8 3.1 1.5 

Safe-level SMOTE, 
Ensemble 0.0 0.6 0.8 0.0 0.8 1.2 0.8 0.8 0.8 

Safe-level SMOTE. 
Tree 0.3 1.8 0.0 0.0 0.0 0.4 0.8 2.3 0.8 

 
The False Discovery Rate (FDR) refers to the proportion of 
positive predictions made by a model that turn out to be false 
positives. It measures the likelihood of a positive prediction 
being incorrect. Tab. 4 presents the FDR from the validation 
confusion matrices of our best models, which were trained on 
original versus oversampled training sets. For both classification 
models trained on the original dataset, the most challenging 
category was Leukemia with thrombocytopenia, with an FDR of 
23.1% in the Ensemble model and 18.2% in the Tree model. 
However, after applying the oversampled SMOTE training set, 
the FDR of the problematic class significantly decreased to 1.5% 
in both models. 
 
Tab. 4: False discovery rates (%) in validation confusion 
matrices of Ensemble and Tree models trained on original vs. 
oversampled training sets 

Training Set, 
Model 
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Original, 
Ensemble 0.7 0.6 2.3 23.1 0.0 0.4 0.0 0.0 1.5 

Original, 
Tree 0.3 1.2 2.3 18.2 0.0 0.4 1.2 0.0 1.5 

SMOTE, 
Ensemble 1.0 0.6 0.8 1.5 0.0 0.0 0.0 0.8 0.0 

SMOTE,  
Tree 0.3 1.2 0.8 1.5 0.0 0.0 0.0 0.8 0.0 

ADASYN,  
Ensemble 1.0 0.0 0.8 2.3 0.0 0.0 0.0 0.0 1.5 

ADASYN, 
Tree 1.0 0.6 0.8 3.0 0.0 0.0 0.0 1.6 1.5 
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Borderline SMOTE, 
Ensemble 0.7 0.0 0.8 1.5 0.0 0.4 0.4 1.5 0.0 

Borderline SMOTE, 
Tree 0.3 1.2 0.8 1.5 0.0 0.0 0.4 3.1 0.8 

Safe-level SMOTE, 
Ensemble 1.0 0.6 0.0 1.5 0.0 0.4 0.8 0.0 0.8 

Safe-level SMOTE. 
Tree 0.3 1.8 0.8 0.8 0.0 0.0 0.8 1.6 0.8 

 
Since all the machine learning models we used are optimisable, 
we aimed to determine the optimal hyperparameters for our best 
classification models, specifically the Ensemble and Tree 
models. Tab. 5 displays the bestpoint hyperparameters for the 
Ensemble model. With these parameters, we observed a 
minimum classification error of 0.0037086. 
 
Tab. 5: Bestpoint hyperparameters of the Ensemble model 
trained on the oversampled SMOTE training set 

Hyperparameter Value 
Ensemble method: Bag 
Number of learners: 27 
Maximum number of splits: 350 
Number of predictors to sample: 7 

 
Tab. 6 presents the optimal hyperparameters for the Tree 
classification model. The minimum classification error observed 
with these hyperparameters was 0.0043136. 
 
Tab. 6: Bestpoint hyperparameters of the Tree model trained on 
the oversampled SMOTE training set 

Hyperparameter Value 
Maximum number of splits: 96 
Split criterion: Maximum deviance reduction 

 
4.3 Identifying Key Features in Tree and Ensemble Models’ 
Predictions 
 
Although we achieved high accuracy, low False Negative Rates 
(FNR), and low False Discovery Rates (FDR) with the Ensemble 
and Tree classification models when trained on the oversampled 
SMOTE training set, we still do not fully understand how these 
models operate. To gain deeper insights into the selected 
machine learning models and identify which of the 14 predictors 
are most significant in their predictions, we calculated both 
permutation feature importance and Shapley importance for each 
feature.  
 
As a result of calculating the permutation feature importance, 
Fig. 7 illustrates the mean importance of each predictor for the 
Ensemble classification model, while Fig. 8 illustrates the mean 
importance of each predictor for the Tree classification model. 
The charts indicate that the most significant predictors in both 
machine learning models were the following: the amount of 
haemoglobin (HGB), the mean corpuscular volume (MCV), the 
platelet count (PLT), the white blood cell count (WBC), the 
mean corpuscular haemoglobin concentration (MCHC), the 
mean corpuscular haemoglobin (MCH), and the haematocrit test 
(HCT). 
 

 
Figure 7: Mean importance per predictor of the Ensemble model 
trained on the oversampled SMOTE training set 
 

 
Figure 8: Mean importance per predictor of the Tree model 
trained on the oversampled SMOTE training set 
 
Fig. 9 and Fig. 10 illustrate the Shapley importance values for 
each predictor variable in the chosen Ensemble and Tree 
classification models. While the significance of these predictors 
closely aligns with the results obtained through permutation 
feature importance, the Shapley graphs offer a more nuanced 
understanding of each predictor's contribution to the model's 
outputs. 
 

 
Figure 9: Shapley importance per predictor of the Ensemble 
model trained on the oversampled SMOTE training set 
 

 
Figure 10: Shapley importance per predictor of the Tree model 
trained on the oversampled SMOTE training set 
 
4.4 MATLAB App for Anaemia Types Prediction 
 
As a practical outcome of our research, we developed a 
MATLAB app (Fig. 11) for diagnosing anaemia and predicting 
its subtype based on Complete Blood Count (CBC) data. Users 
can enter values for 14 predictors derived from the CBC data, 
and the app will calculate and visualise the likelihood of each 
type of anaemia using our Ensemble and Tree classification 
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models. The MATLAB app and the exported Ensemble and Tree 
classification models are available on GitHub [36]. 
 

 
Figure 11: MATLAB App for Anaemia Types Prediction 
 
5 Discussion 
 
The results of this study highlight the potential of SMOTE-based 
oversampling techniques in addressing the challenges posed by 
imbalanced datasets in machine learning classification models. 
By applying these methods, we observed significant 
improvements in the performance metrics of the models used for 
anaemia type prediction. The validation and test accuracies of 
the models trained on the oversampled datasets outperformed 
those trained on the original dataset, with the Tree and Ensemble 
models achieving remarkable validation accuracies of 99.57% 
and 99.50% and test accuracies of 100%. Compared to previous 
studies [17,19–25], which achieved accuracies ranging from 
85.6% to 99.35% using various machine learning algorithms; our 
approach consistently delivered higher accuracy. This is 
primarily attributed to the enhanced representation of minority 
classes through oversampling, reducing False Negative Rates 
(FNR) and False Discovery Rates (FDR) across all categories. 
For instance, the FDR for the previously problematic Leukemia 
with thrombocytopenia category decreased from 23.1% to 1.5% 
when using the oversampled SMOTE dataset. The findings also 
align with other research efforts, emphasising the importance of 
balancing datasets for improved classification outcomes 
[17,21,23,25]. However, our study extends this knowledge by 
evaluating the impact of multiple SMOTE variations, including 
ADASYN, Borderline SMOTE, and Safe-level SMOTE, on 
model performance. Among these, the standard SMOTE 
algorithm consistently yielded the best results regarding 
accuracy and reliability. 

The feature importance analysis provided valuable insights into 
the predictors driving model decisions. Features such as 
haemoglobin levels (HGB), mean corpuscular volume (MCV), 
and platelet count (PLT) emerged as critical indicators for 
differentiating anaemia types. This aligns with clinical 
understandings, reinforcing the relevance of the developed 
models [37,38]. 

While the results are promising, this study has limitations. The 
dataset's reliance on CBC data alone may not capture the full 
clinical complexity of anaemia. Further validation on larger, 
more diverse datasets is necessary to generalise these findings to 
broader populations. 
 
6 Conclusion 
 
This research demonstrates the efficacy of applying SMOTE-
based oversampling techniques to improve the performance of 
machine learning models for anaemia type prediction. By 
addressing class imbalances, the developed Tree and Ensemble 
machine learning models achieved high accuracy (99.57% and 
99.50%), reduced error rates, and provided reliable predictions, 
even for minority classes. The findings underscore the 
importance of data preprocessing in healthcare analytics, 
particularly for imbalanced datasets. A MATLAB application, 
offering a user-friendly tool for real-world implementation, 
further showcased the practical utility of the developed models. 
 

Future research should explore integrating additional clinical 
data and testing these methods on larger datasets to enhance their 
applicability and robustness. Nevertheless, the approach 
presented here sets a solid foundation for leveraging machine 
learning to advance medical diagnostics. 
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