
A D  A L T A   J O U R N A L  O F  I N T E R D I S C I P L I N A R Y  R E S E A R C H  
 

 

DEVELOPING STUDENTS' ABSTRACT THINKING IN SECONDARY SCHOOLS 
 
aROMAN HRMO, b
 

DALIBOR GONDA 

aDTI university, Sládkovičova 533/20, 018 41 Dubnica nad 
Váhom, Slovakia b

 

Faculty of Management Science and 
Informatics, University of Žilina, Univerzitná 1, 01026 Žilina, 
Slovakia 

email: ahrmo@dti.skl, b
 

dalibor.gonda@fri.uniza.sk 

 
Abstract: Abstract thinking is realized in the level of concepts, which are presented in 
a verbal form and are the result of a higher form of generalization and abstraction. 
Abstract thinking and the associated abstraction process has great importance for 
students' progress. Mathematics as an abstract science abstracts from the specific 
nature of the object, thus paving the way for new theories that are applicable in various 
specific practical applications. Developed abstract thinking is an important ability for 
students to solve problems not only in mathematics. Parameter tasks is a suitable tool 
for students to learn about the process of abstraction in mathematical cognition. 
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1 Introduction  
 
Thinking generally refers to brain activity and working with data 
to formulate concepts, solve serious problems and questions, 
make inferences, and form one's own decisions.  Thinking is 
generally considered to be the highest product of evolution and 
is the essence of human existence. Stríženec (2008) defines 
thinking as a connection between memory performance and 
logical abstract processing of symbols. Thinking as a mental 
process is a way for the exercise of human intelligence. When 
we think, we simultaneously perceive all the stimuli around us, 
classify their characteristics, and combine the relevant data 
(Výrost, Ruisel, 2000). 
 
According to cognitive psychology, thinking has three 
distinctive characteristics: 
 
1. Thinking takes place in consciousness, but can be inferred 

from observable behaviour. 
2. Thinking is a process that manipulates knowledge in an 

individual's cognitive system. 
3. Thinking is directed toward solving problems that 

preoccupy the individual (Mayer, 1981). 
 
Ruisel (2008) defines thinking as a cognitive process based on 
the manipulation of concepts through which an individual 
analyzes stimuli, solves problems, makes inferences, achieves 
goals, and interacts with the environment. 
 
Human thinking evolves gradually as part of human 
development. According to Piaget (1958), the development of 
thinking is divided into four stages: 
 
1. Sensomotor stage (from birth to 2 years) - The child 

gradually begins to create symbols for objects in his 
environment.  

2. Preoperational stage (up to about 6 years) - The child 
gradually develops abstraction. Symbols are formed not 
only for the external but also for the internal world. There 
is a significant development of language, which is of great 
importance for the development of symbolic activities. 
Words begin to represent things and concrete activity can 
replace thinking.  

3. The stage of concrete operations (up to 10 years) - The 
child develops working with symbols and the ability to 
mentally handle objects. However, he/she can still only act 
on concrete objects in the immediate environment with 
his/her newly acquired abilities. He does not yet master 
more complex symbolic though operations. 

4. Formal operations stage (from about 10 years of age) - The 
child begins to apply concrete operations to hypothetical 
situations. It is no longer necessary to have real objects or 
even their names. By moving from concrete operations to 
abstract ones, the young person gradually develops the 

skills necessary for logical reasoning. Child at this age is 
even able to formulate hypotheses by which he tries to 
explain an unknown phenomenon. Professor Hejny (1990) 
says that abstract strokes occur at this stage, since it is the 
stage where the transformation of quantity changes into 
quality, represented by a new knowledge or concept. The 
abstraction of the new concept induces a rebuilding of the 
knowledge structure. In fact, every discovery of a 
regularity or some new idea generating  into a new concept 
is an example of an abstract stroke (Hejný, 1978). 

 
According to Piaget's theory of human cognitive development, 
students around the age of 12 are already capable of abstract 
thinking. Abstract thinking is realised in the plane of concepts, 
which are presented in verbal form and are the result of a higher 
form of generalisation and abstraction. Abstract thinking and the 
abstraction process associated with has a great importance for 
students ' progress (not only in mathematics). Several research 
studies have found that students use abstraction processes to 
gradually acquire conceptual knowledge from previously learned 
practices (McBride, 2015; Gonda & Emanovský, 2017). This 
finding is very important as it points to the fact that it is possible 
to supplement students' predominantly procedural knowledge 
with conceptual knowledge. This achieves the necessary balance 
in pupil's knowledge and to enable them to solve unfamiliar 
tasks independently. Professor Hejný (1990) considers the 
development of students' abstract thinking in conjunction with 
the ability to deduce to be one of the fundamental aims of 
mathematics teaching. At the same time, he points out the danger 
of students' formal cognition of mathematics being an obstacle to 
the development of abstract thinking. Developed abstract 
thinking is a prerequisite for achieving mathematical literacy, the 
level which is measured in OECD countries by the PISA test. 
Mathematical literacy is a person's ability to express, apply and 
interpret mathematics in a variety of contexts. It involves 
mathematical thinking, using mathematical concepts, 
procedures, facts and tools to describe, explain or predict 
phenomena. It helps to realize the role of mathematics in the real 
world, and to make sound judgments and decisions on this basis, 
as it is required from a constructive, engaged, and reflective 
citizen (Niss, 2015). In terms of problem solving, the student is 
expected to know basic mathematical concepts, knowledge and 
skills. Basic mathematical skills are considered to be: 
communication, visualisation/representation, strategy design, 
mathematisation, reasoning and argumentation, use of symbolic, 
formal and technical language and operations, and use of 
mathematical tools (PISA, 2012). In terms of problem solving, 
student is expected to know basic mathematical concepts, 
knowledge and skills. Basic mathematical skills are considered 
to be: communication, visualisation/representation, strategy 
design, mathematization, reasoning and argumentation, use of 
symbolic, formal and technical language and operations, use of 
mathematical tools (PISA, 2012). Since 2003, a persistent low 
level of mathematical literacy can be observed overall in OECD 
countries. In 2003, 66.5% of tested students in the OECD 
achieved a level of mathematical literacy at level 3 or below (the 
highest level is level 6). In 2015, 68.7% of OECD students tested 
reached level 3 and below in mathematical literacy.  Only 4.0% 
of OECD students tested reached Level 6 in 2003, and in 2015 
this was almost halved to 2.3%. On the other hand, Level 1 and 
below was achieved by 21.4% of students in 2003. In 2015, this 
was 23.4% of students tested. In addition to the persistently low 
levels of mathematical literacy, the data above also show a slight 
decline in the percentage of students who achieved level 6 and 
an increase in students at level 1 and below.   
 
It is quite alarming that the majority of students tested do not 
exceed level 3 mathematical literacy. According to the results of 
the above mentioned testing, it seems that the main goal of 
mathematical education has not yet been met, which according 
to the SPO: "The main goal of mathematical education is for the 
student to acquire the ability to use mathematics and 
mathematical thinking in his/her future life"(SPO, 2015). If 
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students are to use mathematical thinking in everyday life, we 
consider that it is necessary to set up mathematics teaching in 
such  way that it will purposefully develop each level of 
thinking. From about the age of 12, it is appropriate to direct 
mathematical teaching primarily towards the development of 
abstract thinking. The acquisition of abstract thinking is the end 
of a developmental journey, where at the end of which stands a 
young person who can think logically and interact with the world 
around him. Already the adolescent acquires the tools that will 
enable him or her to move forward in the process of cognitive 
maturation (Ruisel, 2008).   
 
Within mathematical symbolic notations, students are first 
confronted only with numbers, where prime numbers playing an 
essential role in mathematics (Ďuriš et al, 2021). In addition to 
numbers and symbols of mathematical operations, they also 
encounter letters later on. These letters mostly represent some 
numerical values. If a letter in mathematical notation represents 
one particular numerical value, it is called a constant. A constant 
denotes a fixed number whose notation is too "complicated", a 
number whose exact value we do not know (e.g., Ludolph's 
number π), or a number whose value we do not yet know. In 
expressions, we often encounter a letter that we call a variable. A 
variable represents an arbitrary number (object) from a pre-
specified set. When an expression with a variable occurs in an 
equation, we are talking about an unknown whose specific value 
is to be determined so that the equation becomes an equality. 
Thus, we are trying to transform the equation into the form 
unknown = known number. Another possibility represented by a 
letter in a mathematical problem is a parameter. A parameter is 
an indeterminate but fixed element that determines the value of a 
variable. The paradoxical epistemic nature of this algebraic 
object rests on its apparent contradiction: it is a fixed concrete 
number, yet it remains indeterminate in that it is not a real 
number (Ely & Adams, 2012). To make matters worse for 
students, in some cases we refer to letters as coefficients (e.g., 
the coefficients of a quadratic equation). However, coefficients 
are essentially parameters. 
 
2  Learning the concept of a parameter  
 
The biggest problem for students is understanding the very 
nature and function of a parameter and the related problems of 
distinguishing it from the unknown in an equation. The causes of 
pupils' misunderstanding of the concept of parameter have been 
addressed by number of researchers (Bardini, Radford, & 
Sabena, 2005; Martinez et al, 2011; Bardini & Pierce, 2015; 
Emanovský & Gonda, 2020). These researches show that 
students often confuse the concepts of variable, unknown and 
parameter.  A variable is often understood by students as a 
'potentially determined' number. Thus, they see it as a 
temporarily unknown number that will be determined at some 
point in time. This is probably the source of the frequent 
confusion between the term variable and the term unknown, by 
which we mean an unknown number that is determined when 
solving an equation or inequality. Bardini et al. (2005) introduce 
a parameter as a new algebraic object - an unknown, but at a 
given time the fixed element chosen from a set of variable 
values. In this context, a parameter is closer to the notion of 
variable than to the notion of unknown. Students encounter the 
concept of parameter most often in secondary school within the 
unit of solving equations and inequalities with a parameter. A 
problem containing a parameter is essentially a set of problems 
of the same type. A concrete problem is obtained by replacing 
the parameter by some number. If we add a parameter to the 
problem, the type of the problem does not change (the quadratic 
equation remains quadratic). Therefore, the procedure for 
solving the problem is essentially the same as for a problem of 
the given type without a parameter. This is until the next step of 
the solution depends on the value of the parameter. Although the 
parameter in the problem statement does not make it a new type 
of problem requiring also a new method of solution. However, in 
pedagogical practice, serious problems are often encountered by 
pupils when solving problems with a parameter.  
 

A new unit often evokes for students the need to learn new 
procedures, which is related to the prevailing tendency of 
students to learn mathematics by memorizing computational 
algorithms. The research finding is that mathematical teaching is 
dominated by the teaching of procedural knowledge. This is 
surprising because there is a largely held belief among 
practitioners that conceptual knowledge should be developed 
before students begin to acquire the relevant computational 
procedures and algorithms (Baroody, 2003; Kilpatrick et al., 
2001). Therefore, it is important to recognise the difficulties that 
students have in acquiring the concept of a parameter. It is 
compounded by students trying to know the solution procedure 
without understanding the individual steps of the algorithm. 
Understanding the nature and function of a parameter represents 
a long-term task from a methodological point of view. 
According to Hejny (1990), it is not possible to explain to 
students what a parameter is in one go if they have no experience 
with it. This fact requires a different approach to the acquisition 
of the concept of a parameter by first providing students with 
procedural knowledge of a parameter and gradually trying to 
develop their conceptual knowledge of the concept of a 
parameter. According to several researches, this "reverse" 
approach of acquiring a new concept is possible (Karmiloff-
Smith 1992; Siegler and Stern, 1998; Canobi 2009; McNeil et 
al., 2014). In acquiring the concept of parameter, student 
apparently has to go through this way so that subsequently the 
concept of parameter can be used in the development of the 
learners' abstract thinking. 
 
Example 1 Solve the inequality (𝑥 + 2)(4 − 𝑥) ≤ 0 on the set R. 
 
Solution. For example, we use the zero-point method to find that 
the solution of the given inequality is 𝑥 ∈ (−∞�; �−2⟩ ∪ ⟨4 �; �∞). 
We perform the test by replacing the unknown x in the input 
inequality by the expression −2 − 𝑎, where 𝑎 ∈ ⟨0 �; �∞). With the 
formed expression and the chosen admissible values of the 
parameter a, we verify in one computation that all elements of 
the interval (−∞�; �−2⟩ are solutions of the given inequality. To 
verify the correctness of the interval ⟨4 �; �∞) we replace the 
unknown x in the inequality by the expression 4 + 𝑎,where 
𝑎 ∈ ⟨0 �; �∞). These assumptions follow from the execution of the 
test in the previous two examples.  In the first case, after 
indentation, we get 
 

𝐿𝑆 = (−2 − 𝑎 + 2)(4 + 2 + 𝑎) 
 
and after modifications 
 

𝐿𝑆 = (−𝑎)(6 + 𝑎) . 
 
The right side is equal to 0. According to the equation, LS ≤ RS, 
it should be valid 
 

(−𝑎)(6 + 𝑎) ≤ 0. 
 
We are looking for values of the parameter a for which the 
expression LS will have negative values or will be equal to zero. 
Again, using the zero-point method, we determine that the given 
condition is satisfied for the values of the parameter 𝑎 ∈
(−∞�; �−6⟩ ∪ ⟨0 �; �∞).   
 
According to the previous examples, we expect to solve 𝑎 ∈
⟨0 �; �∞). But by performing the test, we found that the condition 
LS ≤ RS is still satisfied also for parameter values belonging to 
the interval (−∞�; �−6⟩. It is a natural question to ask what values 
the unknown x , which has been replaced by the expression 
−2 − 𝑎, takes for values of the parameter 𝑎 ∈ (−∞�; �−6⟩. The 
equality of 𝑥 = −2 − 𝑎 implies 𝑎 = −𝑥 − 2 while 𝑎 ≤ −6. 
stands. Substituting in the inequality for the parameter a, we get
  

−𝑥 − 2 ≤ −6          ⇒             𝑥 ≥ 4. 
 
This confirms that the given inequality is also satisfied for values 
of the unknown from the interval ⟨4 �; �∞). 
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By evaluating the previous performance test of the solution of 
the inequality using the parameter, we come to a certain 
difference compared to the current test of the correctness of the 
equations.If we have multiple solutions of an equation, the 
correctness test is performed by a separate calculation for each 
solution. If the solution of an inequality is the union of two 
intervals, a single calculation for both parts of the solution of the 
inequality is sufficient to perform the correctness test using the 
parameter. 
 
We verify the universality of this "discovery" on different types 
on results of inequality. 
 
Example 2 Solve the inequality on the set R  (2 − 𝑥)(𝑥2 − 9) ≥ 0. 
 
Solution. Using the zero-point method, we find that the solution 
of the given inequality is 𝑥 ∈ (−∞�; �−3⟩ ∪ ⟨2 �; �3⟩. To perform the 
correctness test, we use the "discovery" from the previous 
Example 3.3. We perform the test by replacing the unknown x in 
this case by the expression −3 − 𝑎,, where a is a parameter and 
represents all numbers in the interval ⟨0 �; �∞). We will see if this 
also verifies the correctness of the interval, which is bounded on 
both sides. After fitting to the assignment and making 
adjustments, the following stands. 
 

𝐿𝑆 = 𝑎(𝑎 + 5)(𝑎 + 6) . 
 
At the same time, according to the assignment, L𝑆 ≥ 𝑅𝑆 should 
be valid, so we solve the inequality  
 

𝑎(𝑎 + 5)(𝑎 + 6) ≥ 0  . 
 
Using the zero-point method, we find that LS takes nonnegative 
values for parameter values 𝑎 ∈ ⟨−6 �; �−5⟩ ∪ ⟨0 �; �∞). We see that 
the admissible values of the parameter are values from the 
"expected" interval ⟨0 �; �∞), thus confirming the validity of the 
𝑥 ∈ (−∞�; �−3⟩. ⟩ part of the result. We now examine what values 
the variable x takes for the remaining calculated values of the 
parameter a. For a, the following holds  
 

𝑎 = −𝑥 − 3    ∧      (𝑎 ∈ ⟨−6 �; �−5⟩   ⇒ −6 ≤ 𝑎 ≤ −5). 
 
On the basis of the above 
 

−6 ≤ −𝑥 − 3 ≤ −5 
 
and after modifications 
 

2 ≤ 𝑥 ≤ 3. 
 
That is 𝑥 ∈ ⟨2 �; �3⟩, which also verifies the correctness of the 
second part of the solution set of the given inequality. 
 
In the following example, we examine how the test using the 
parameter turns out if the solution of the inequality is an interval 
except for one number. 
 
Example 3 Solve the inequality 𝑥2(𝑥 − 3) < 0 on the set R. 
 
Solution. The solution of the given inequality is found by means 
of the zero point method. All 𝑥 ∈ (−∞�; �3) − {0}  satisfy the 
given inequality.  We perform the correctness test by exploiting 
the parameter by replacing the unknown x by the expression 
−3 − 𝑎,, where a is a parameter that represents numbers from 
the interval(0;∞). The parameter is set as if the solution of the 
inequality were the interval (−∞�; �3). The goal of the following 
validation steps is not primarily to perform the test itself. The 
focus will be whether, even in this case, a single computation is 
sufficient to detect an inadmissible value for the unknown x in 
the interval (−∞�; �3).After replacing the unknown by the above 
expression with the parameter and after adjustments, the 
following stands 
 

𝐿𝑆 = 𝑎(3 − 𝑎)2. 

According to the assignment, 𝐿𝑆 < 𝑅𝑆 must be valid, so we 
solve the inequality 
 

𝑎(3 − 𝑎)2 < 0. 
 
LS takes negative values for 𝑎 ∈ (0;∞) − {3}.  In a simple way, 
we find that if 𝑎 = 3, then 𝑥 = 0. It can be stated that even in 
this case, one calculation is sufficient to verify the correctness of 
the result of the inequality as a whole.  
 
In the final example, we will verify whether one calculation is 
sufficient to test correctness even if the inequality has a solution 
consisting of more than two parts. 
 
Example 3 Solve the inequality on the set R  (𝑥−3)(𝑥+4)

𝑥(6−𝑥)
≤ 0. 

 
Solution. Using the zero-point method, we arrive at a solution of 
the inequality 𝑥 ∈ (−∞�; �−4⟩ ∪ (0 �; �3⟩ ∪ (6 �; �∞), which can be 
naturally split into three subsets. We construct an expression to 
replace the unknown as if we were going to check the 
correctness of only one of the intervals, for example the interval 
(6 �; �∞). All elements of this interval can be replaced by the 
expression 6 + 𝑎 where a is a parameter that can be replaced by 
any number from the interval (0;∞). After the above 
substitution and after adjustments, the following stands 
 

𝐿𝑆 =
(𝑎 + 3)(𝑎 + 10)
−𝑎(𝑎 + 6)

   . 

 
From the definition of the inequality 𝐿𝑆 ≤ 𝑅𝑆, so we solve the 
inequality 
 

(𝑎 + 3)(𝑎 + 10)
−𝑎(𝑎 + 6)

≤ 0  . 

 
𝐿𝑆 takes non-positive values for 𝑎 ∈ (−∞�; �−10⟩ ∪ (−6 �;−�3⟩ ∪
(0 �; �∞). We know that for 𝑎 ∈ (0 �; �∞) the unknown takes values 
from the interval (6 �; �∞). Based on the experience from the 
previous examples, we assume that to complete the correctness 
test, it is sufficient to find out what values the unknown takes if 
the parameter represents numbers from the intervals (−∞�; �−10⟩ 
a (−6 �;−�3⟩. Based on the substitution used, 𝑎 = 𝑥 − 6.  The 
interval (−∞�; �−10⟩ can be replaced by the inequality 𝑎 ≤ −10, 
after substituting for the parameter and after adjustments we get 
𝑥 ≤ −4,, which corresponds to the first part of the solution, i.e. 
the interval (−∞�; �−4⟩. The interval (−6 �;−�3⟩ can be replaced by 
the system of inequalities −6 < 𝑎 ≤ −3. Substituting for the 
parameter and after simple modifications, we have the notation 
0 < 𝑥 ≤ 3.. This notation corresponds to the second part of the 
solution of the inequality, which is the interval (0 �; �3⟩.  This 
confirms to us that even for a result of an inequality that consists 
of more than two parts, it is sufficient to set the parameter to 
cover one part of the result in order to perform the overall test. 
 
3  Process of abstraction 
 
The aim of the previous examples is to learn the notion of 
parameter and to get the first experience for students with this 
mathematical concept. It is a suitable tool for the process of 
abstraction. The correctness test is only a "mathematical 
backdrop" to introduce the new concept into the students' world 
of knowledge.  As we mentioned above abstract thinking is 
realized in concepts that are presented in verbal form and that are 
the result of a higher form of generalization and abstraction. 
Abstract thinking and the abstraction process associated with it, 
has a great importance for students' progress. Mathematics as an 
abstract science abstracts from the concrete nature of an object, 
thus paving the way for new theories that are applicable in a 
variety of concrete practical applications. Abstractness allows 
mathematics to capture the variety of forms of real objects and 
consequently to reveal the relatedness between different objects 
(Šedivý et al., 2001). The parameter problems are a good tool for 
students to learn about the process of abstraction in the context 
of mathematical cognition. With this intention, parameter tasks 
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will become a powerful tool for developing students' abstract 
thinking because they will be directly initiated into the 
mathematical mode of abstraction. The process of abstraction 
can be made accessible for students in the form of graded tasks, 
with the gradual incorporation of a parameter or several 
parameters into an initially 'concrete' task. When a parameter (or 
multiple parameters) is used in solving a particular problem, 
there is a move away from calculating that particular problem to 
finding a solution to that problem in general. With parameters, it 
is possible to discover various dependencies between values 
affecting the final outcome of the problem. A common product 
of "parameterizing" a problem is a formula that can be "entered" 
into a computer, which will do the necessary calculations after 
retrieving the specific values of each parameter. 
Parameterization of the task leads to the creation of a solution for 
the entire task system. The ability to parameterize a problem and 
then solve the resulting parametric problem is a significant 
benefit and an extension of students' problem solving skills and 
abstract thinking. Another benefit of problems solved by 
parameterization is the further development of the correct 
concept of a parameter as a substitute for numbers, in the search 
for an efficient way to solve the given problem. Teaching 
mathematics enriched with graded problems associated with 
parametrization develops students' ability to solve a specific 
problem with general insight. Through the parametrization of 
problems, students become aware that a particular equation is a 
mathematical model of a given specific situation, but the 
corresponding parametric equation is a mathematical model of 
the whole system of problems. We think that this knowledge has 
a great benefit, for example, for future programmers. Their task 
is often to create a complex solution to a problem (preferably 
creating a formula), which is the core of a given program. The 
computer retrieves the necessary values (parameters) from the 
requestor of the specific request and offers the desired result in a 
short time. This is an example where a person has created a 
solution method and then "taught" the computer to calculate 
specific tasks from the given task system. This fulfils society's 
requirement for teaching of mathematics: man creates - 
computer computes. In the following we present some sample 
graded problems associated with parameterization, which aim to 
support the development of students' abstract thinking. 
 
4  Conclusion 

We are living in the time of the fourth industrial revolution (IR 
4.0), which is changing the way we live, work and communicate 
at a relatively rapid pace. This trend is likely to continue. 
According to the World Economic Forum, an estimated 65% of 
children enrolling in primary education today will end up 
working in jobs that have not yet been created at that time. At 
the same time, there is constant emphasis on education being 
geared towards preparing young people for their future working 
lives. Thus, education needs to be responsive to the current 
needs of practice. The response to the needs of IR4.0 is the 
educational vision of Education 4.0, whose primary objective is 
to match human skills and new technical capabilities in order to 
prepare students for new opportunities in the constantly evolving 
labour market. In today's companies, humans are needed to be 
able to consider a lot of disparate information and combine it 
into a single solution. The expected creativity of a graduate is 
linked to divergent thinking, which opens the mind to the 
knowledge that there may be multiple possibilities of the right 
way to solve a problem. Given the relatively easy and quick 
availability of the necessary information, the Education 4.0 
vision recommends that education should focus more on 
developing the skills that will enable students to actively use the 
information they have acquired. This is the brain's ability to 
switch seamlessly between different modes of thinking, e.g. 
creative, abstract, critical thinking, etc. The more fluently you 
can do this, the more likely it is that new patterns and 
associations will be formed. This ability requires sufficiently 
developed abstract thinking so that the graduate trainee (future 
employee) is able to abstract important knowledge from the 
situations and objects  which he or she acquired and is able to 
adapt to new, often very distant, conditions. Teaching 
mathematics with a focus on the development of critical thinking 

creates the preconditions for being able to transfer the acquired 
knowledge from one object to another, which can be regarded as 
signs of cognitive flexibility. Cognitive flexibility helps to 
maintain attention or to shift it to something else depending on 
the changing demands of the environment or to take a different 
approach to different situations. At the same time, students are 
expected to solve problems independently with which they have 
not encountered before. To do this, they need to be able to form 
an overall picture of the problem in the context and, through the 
process of abstraction, to identify the essential features of the 
problem and relate them to other abstractions in their minds. An 
important factor is the ability to notice details, which are often 
crucial in finding the right solution to a problem. It is the 
parameterization of the problem, i.e. the attempt to solve the 
problem in a general way, that often leads to the discovery of 
these key details, which are often the decisive factor for the 
effective solution of the given problem. We believe that current 
mathematical education does not need  primarily a change in 
content, but rather a change in the forms of teaching and the 
goals of mathematical education. In the upgraded ISCED 3 state 
curriculum for upper secondary education, the term 'parameter' 
no longer appears. Thus, the teaching of problems with a 
parameter has been omitted from the mathematical teaching. The 
notion of parameter is a difficult concept, but it has potential to 
develop the necessary abstract thinking and in our opinion, a 
sufficient argument for its reintroduction into teaching of 
mathematics. 
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